Vinolia Phumzile Mkhwanazi, B. J. Babalola, O. Ayodele, T. Tshephe, P. Olubambi
{"title":"放电等离子烧结TaN/TiAl复合材料的显微组织和显微硬度研究","authors":"Vinolia Phumzile Mkhwanazi, B. J. Babalola, O. Ayodele, T. Tshephe, P. Olubambi","doi":"10.4028/p-87lh6f","DOIUrl":null,"url":null,"abstract":"Titanium aluminide (TiAl)-based materials have attracted much attention in the aerospace and automobile industries due to their attractive properties. Studying the microhardness of these materials as it relates to the as-sintered and heat-treated state is of interest in this article. TiAl and TiAl-based composites with varying additions of Tantalum nitride (TaN) content (2, 4, 6, 8 wt.%) were prepared by spark plasma sintering technique. The samples were sintered at 1150 °C, 100 C/min, 50 MPa, a dwell time of 10 mins, and fully dense characteristics as their relative densities were above 98 %. The microstructure and microhardness of the sintered samples were examined. Also, the sintered samples' microhardness was evaluated after the heat treatment process at 750 °C. It was observed that the relative density of the composites dropped at 2 and 8 wt.% addition of TaN, while the addition of TaN significantly increased hardness value in the as-sintered and heat-treated condition, from 304 HV to a maximum of 499 HV in the as-sintered state. The microstructures revealed that the reinforcement was segregated to the gamma phase, interlocked by the lamellar colonies.","PeriodicalId":45925,"journal":{"name":"International Journal of Engineering Research in Africa","volume":"61 1","pages":"69 - 77"},"PeriodicalIF":0.8000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spark Plasma Sintering of TaN/TiAl Composites: Microstructure and Microhardness Study\",\"authors\":\"Vinolia Phumzile Mkhwanazi, B. J. Babalola, O. Ayodele, T. Tshephe, P. Olubambi\",\"doi\":\"10.4028/p-87lh6f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Titanium aluminide (TiAl)-based materials have attracted much attention in the aerospace and automobile industries due to their attractive properties. Studying the microhardness of these materials as it relates to the as-sintered and heat-treated state is of interest in this article. TiAl and TiAl-based composites with varying additions of Tantalum nitride (TaN) content (2, 4, 6, 8 wt.%) were prepared by spark plasma sintering technique. The samples were sintered at 1150 °C, 100 C/min, 50 MPa, a dwell time of 10 mins, and fully dense characteristics as their relative densities were above 98 %. The microstructure and microhardness of the sintered samples were examined. Also, the sintered samples' microhardness was evaluated after the heat treatment process at 750 °C. It was observed that the relative density of the composites dropped at 2 and 8 wt.% addition of TaN, while the addition of TaN significantly increased hardness value in the as-sintered and heat-treated condition, from 304 HV to a maximum of 499 HV in the as-sintered state. The microstructures revealed that the reinforcement was segregated to the gamma phase, interlocked by the lamellar colonies.\",\"PeriodicalId\":45925,\"journal\":{\"name\":\"International Journal of Engineering Research in Africa\",\"volume\":\"61 1\",\"pages\":\"69 - 77\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering Research in Africa\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-87lh6f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Research in Africa","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-87lh6f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Spark Plasma Sintering of TaN/TiAl Composites: Microstructure and Microhardness Study
Titanium aluminide (TiAl)-based materials have attracted much attention in the aerospace and automobile industries due to their attractive properties. Studying the microhardness of these materials as it relates to the as-sintered and heat-treated state is of interest in this article. TiAl and TiAl-based composites with varying additions of Tantalum nitride (TaN) content (2, 4, 6, 8 wt.%) were prepared by spark plasma sintering technique. The samples were sintered at 1150 °C, 100 C/min, 50 MPa, a dwell time of 10 mins, and fully dense characteristics as their relative densities were above 98 %. The microstructure and microhardness of the sintered samples were examined. Also, the sintered samples' microhardness was evaluated after the heat treatment process at 750 °C. It was observed that the relative density of the composites dropped at 2 and 8 wt.% addition of TaN, while the addition of TaN significantly increased hardness value in the as-sintered and heat-treated condition, from 304 HV to a maximum of 499 HV in the as-sintered state. The microstructures revealed that the reinforcement was segregated to the gamma phase, interlocked by the lamellar colonies.
期刊介绍:
"International Journal of Engineering Research in Africa" is a peer-reviewed journal which is devoted to the publication of original scientific articles on research and development of engineering systems carried out in Africa and worldwide. We publish stand-alone papers by individual authors. The articles should be related to theoretical research or be based on practical study. Articles which are not from Africa should have the potential of contributing to its progress and development.