{"title":"X^ (p^2) +aX+a的伽罗瓦群","authors":"Soufyane Mokhtari, Boualem Benseba","doi":"10.24193/mathcluj.2023.1.12","DOIUrl":null,"url":null,"abstract":"Let p be an odd prime number, and a be an integer divisible by p exactly once. We prove that the Galois group G of the trinomial X^{p^{2}}+aX+a over the field Q of rational number is either the full symmetric group S_{p^{2}} or G lies between AGL(1,p^{2}) and AGL(2,p)$. Furthermore, we establish conditions when G is S_{p^{2}}.","PeriodicalId":39356,"journal":{"name":"Mathematica","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Galois group of X^{p^2}+aX+a\",\"authors\":\"Soufyane Mokhtari, Boualem Benseba\",\"doi\":\"10.24193/mathcluj.2023.1.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let p be an odd prime number, and a be an integer divisible by p exactly once. We prove that the Galois group G of the trinomial X^{p^{2}}+aX+a over the field Q of rational number is either the full symmetric group S_{p^{2}} or G lies between AGL(1,p^{2}) and AGL(2,p)$. Furthermore, we establish conditions when G is S_{p^{2}}.\",\"PeriodicalId\":39356,\"journal\":{\"name\":\"Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/mathcluj.2023.1.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/mathcluj.2023.1.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Let p be an odd prime number, and a be an integer divisible by p exactly once. We prove that the Galois group G of the trinomial X^{p^{2}}+aX+a over the field Q of rational number is either the full symmetric group S_{p^{2}} or G lies between AGL(1,p^{2}) and AGL(2,p)$. Furthermore, we establish conditions when G is S_{p^{2}}.