T. Matsuyama, Shota Sonoda, Tomoki Fuchita, Shinji Sakashita, Kouichi Tsuji
{"title":"用共聚焦微x射线荧光成像原位观察锌底漆钢板在NaCl溶液中的电化学反应","authors":"T. Matsuyama, Shota Sonoda, Tomoki Fuchita, Shinji Sakashita, Kouichi Tsuji","doi":"10.1002/xrs.3401","DOIUrl":null,"url":null,"abstract":"Steel plates have been widely used in bridges, vehicle bodies, guardrails, and so forth. Generally, to improve corrosion resistance, the surface of a steel plate is coated with a Zn layer. However, when the coated steel plate is scratched by external factors, the corrosion resistance decreases. Therefore, it is important to elucidate the elution processes of elements in coated layers and steel plates to develop new coated films and improve corrosion‐resistant techniques. During corrosion, an elution reaction between the coated metal and Fe (anodic reaction) and a reduction reaction of oxygen (cathodic reaction) occur. Confocal micro‐x‐ray fluorescence imaging was employed to visualize the elution processes at the anodic and cathodic steel plates. A Zn primer steel plate was scratched and then immersed in sodium chloride solution. The Zn elution process at the anodic side was observed when a constant current was applied to the two steel plates by a galvanostat. The Fe elution process did not occur, and we believe that the sacrificial protection of Zn inhibited the process. The elutions of Zn and Fe were not observed on the cathodic side of the steel plate. Using the proposed method, we successfully visualized the elemental distributions at the anodic and cathodic sides of the steel plates.","PeriodicalId":23867,"journal":{"name":"X-Ray Spectrometry","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In situ observation of electrochemical reaction of Zn primer steel plate in NaCl solution using confocal micro‐x‐ray fluorescence imaging\",\"authors\":\"T. Matsuyama, Shota Sonoda, Tomoki Fuchita, Shinji Sakashita, Kouichi Tsuji\",\"doi\":\"10.1002/xrs.3401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Steel plates have been widely used in bridges, vehicle bodies, guardrails, and so forth. Generally, to improve corrosion resistance, the surface of a steel plate is coated with a Zn layer. However, when the coated steel plate is scratched by external factors, the corrosion resistance decreases. Therefore, it is important to elucidate the elution processes of elements in coated layers and steel plates to develop new coated films and improve corrosion‐resistant techniques. During corrosion, an elution reaction between the coated metal and Fe (anodic reaction) and a reduction reaction of oxygen (cathodic reaction) occur. Confocal micro‐x‐ray fluorescence imaging was employed to visualize the elution processes at the anodic and cathodic steel plates. A Zn primer steel plate was scratched and then immersed in sodium chloride solution. The Zn elution process at the anodic side was observed when a constant current was applied to the two steel plates by a galvanostat. The Fe elution process did not occur, and we believe that the sacrificial protection of Zn inhibited the process. The elutions of Zn and Fe were not observed on the cathodic side of the steel plate. Using the proposed method, we successfully visualized the elemental distributions at the anodic and cathodic sides of the steel plates.\",\"PeriodicalId\":23867,\"journal\":{\"name\":\"X-Ray Spectrometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"X-Ray Spectrometry\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/xrs.3401\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"X-Ray Spectrometry","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/xrs.3401","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
In situ observation of electrochemical reaction of Zn primer steel plate in NaCl solution using confocal micro‐x‐ray fluorescence imaging
Steel plates have been widely used in bridges, vehicle bodies, guardrails, and so forth. Generally, to improve corrosion resistance, the surface of a steel plate is coated with a Zn layer. However, when the coated steel plate is scratched by external factors, the corrosion resistance decreases. Therefore, it is important to elucidate the elution processes of elements in coated layers and steel plates to develop new coated films and improve corrosion‐resistant techniques. During corrosion, an elution reaction between the coated metal and Fe (anodic reaction) and a reduction reaction of oxygen (cathodic reaction) occur. Confocal micro‐x‐ray fluorescence imaging was employed to visualize the elution processes at the anodic and cathodic steel plates. A Zn primer steel plate was scratched and then immersed in sodium chloride solution. The Zn elution process at the anodic side was observed when a constant current was applied to the two steel plates by a galvanostat. The Fe elution process did not occur, and we believe that the sacrificial protection of Zn inhibited the process. The elutions of Zn and Fe were not observed on the cathodic side of the steel plate. Using the proposed method, we successfully visualized the elemental distributions at the anodic and cathodic sides of the steel plates.
期刊介绍:
X-Ray Spectrometry is devoted to the rapid publication of papers dealing with the theory and application of x-ray spectrometry using electron, x-ray photon, proton, γ and γ-x sources.
Covering advances in techniques, methods and equipment, this established journal provides the ideal platform for the discussion of more sophisticated X-ray analytical methods.
Both wavelength and energy dispersion systems are covered together with a range of data handling methods, from the most simple to very sophisticated software programs. Papers dealing with the application of x-ray spectrometric methods for structural analysis are also featured as well as applications papers covering a wide range of areas such as environmental analysis and monitoring, art and archaelogical studies, mineralogy, forensics, geology, surface science and materials analysis, biomedical and pharmaceutical applications.