V. Gopalan, V. Pragasam, Hitesh Byatarayanapura Narayanaswamy, G. Balasubramanian, P. Chinnaiyan
{"title":"香蕉纤维与碳化硅增强聚合物基复合材料加工特性研究","authors":"V. Gopalan, V. Pragasam, Hitesh Byatarayanapura Narayanaswamy, G. Balasubramanian, P. Chinnaiyan","doi":"10.24423/ENGTRANS.1167.20200923","DOIUrl":null,"url":null,"abstract":"In this study, machining characteristics of polymer composite consisting of banana fiber and silicon carbide (SiC) as reinforcements and epoxy resin as matrix are investigated. Reinforcement phases consist of raw banana fiber powder sieved to 100 microns size of 1% (w/w) and SiC powder of 1% (w/w). The conventional machining process is carried out on the fabricated composite samples by considering the depth of cut, feed rate and speed as influential parameters. The central composite design (CCD) is used to design the experiment based on response surface methodology (RSM). The analysis of variance (ANOVA) is used to study the influences of the depth of cut, feed rate and the speed on the material removal rate (MRR) and surface roughness. The results reveal that the feed rate is the most influential parameter for minimizing surface roughness and maximizing MRR. It is observed that the feed rate plays an important role in determining the surface roughness and MRR followed by the depth of cut and speed. The optimized parameters for maximum MRR and minimum surface roughness are also obtained.","PeriodicalId":38552,"journal":{"name":"Engineering Transactions","volume":"68 1","pages":"297-313"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Investigation on Machining Characteristics of Banana Fiber and Silicon Carbide Reinforced Polymer Matrix Composites\",\"authors\":\"V. Gopalan, V. Pragasam, Hitesh Byatarayanapura Narayanaswamy, G. Balasubramanian, P. Chinnaiyan\",\"doi\":\"10.24423/ENGTRANS.1167.20200923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, machining characteristics of polymer composite consisting of banana fiber and silicon carbide (SiC) as reinforcements and epoxy resin as matrix are investigated. Reinforcement phases consist of raw banana fiber powder sieved to 100 microns size of 1% (w/w) and SiC powder of 1% (w/w). The conventional machining process is carried out on the fabricated composite samples by considering the depth of cut, feed rate and speed as influential parameters. The central composite design (CCD) is used to design the experiment based on response surface methodology (RSM). The analysis of variance (ANOVA) is used to study the influences of the depth of cut, feed rate and the speed on the material removal rate (MRR) and surface roughness. The results reveal that the feed rate is the most influential parameter for minimizing surface roughness and maximizing MRR. It is observed that the feed rate plays an important role in determining the surface roughness and MRR followed by the depth of cut and speed. The optimized parameters for maximum MRR and minimum surface roughness are also obtained.\",\"PeriodicalId\":38552,\"journal\":{\"name\":\"Engineering Transactions\",\"volume\":\"68 1\",\"pages\":\"297-313\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24423/ENGTRANS.1167.20200923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24423/ENGTRANS.1167.20200923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Investigation on Machining Characteristics of Banana Fiber and Silicon Carbide Reinforced Polymer Matrix Composites
In this study, machining characteristics of polymer composite consisting of banana fiber and silicon carbide (SiC) as reinforcements and epoxy resin as matrix are investigated. Reinforcement phases consist of raw banana fiber powder sieved to 100 microns size of 1% (w/w) and SiC powder of 1% (w/w). The conventional machining process is carried out on the fabricated composite samples by considering the depth of cut, feed rate and speed as influential parameters. The central composite design (CCD) is used to design the experiment based on response surface methodology (RSM). The analysis of variance (ANOVA) is used to study the influences of the depth of cut, feed rate and the speed on the material removal rate (MRR) and surface roughness. The results reveal that the feed rate is the most influential parameter for minimizing surface roughness and maximizing MRR. It is observed that the feed rate plays an important role in determining the surface roughness and MRR followed by the depth of cut and speed. The optimized parameters for maximum MRR and minimum surface roughness are also obtained.
期刊介绍:
Engineering Transactions (formerly Rozprawy Inżynierskie) is a refereed international journal founded in 1952. The journal promotes research and practice in engineering science and provides a forum for interdisciplinary publications combining mechanics with: Material science, Mechatronics, Biomechanics and Biotechnologies, Environmental science, Photonics, Information technologies, Other engineering applications. The journal publishes original papers covering a broad area of research activities including: experimental and hybrid techniques, analytical and numerical approaches. Review articles and special issues are also welcome. Following long tradition, all articles are peer reviewed and our expert referees ensure that the papers accepted for publication comply with high scientific standards. Engineering Transactions is a quarterly journal intended to be interesting and useful for the researchers and practitioners in academic and industrial communities.