{"title":"获得精确运动的专业知识-我们能从一个优秀的斯诺克运动员那里学到什么?","authors":"P. Kong, J. Pan, D. Chu, P. Cheung, P. Lau","doi":"10.5334/paah.111","DOIUrl":null,"url":null,"abstract":"Snooker can be an attractive life-long physical activity, given its popularity across all age groups in Asia and Europe. However, scientific research on the cueing movement is limited. This case study presented the biomechanical profiles of the cueing movement in an elite male snooker player (age 37 years old, height 173 cm, body mass 70 kg). Kinematics of the upper limb and cue stick, were examined in five selected snooker tasks (warm-up, stun, top spin, back spin, and stop shots) using the Vicon motion capture system. Ground reaction forces and centre of pressure characteristics were recorded using two Kistler force platforms. Results showed that the cueing movement was contributed primarily by elbow flexion/extension and much less wrist flexion/extension. The high degree of cue stick position overlap between the practice swing and final stroke indicated high level of cueing precision. Weight transfer between feet revealed a slight lean towards the left foot throughout the final stroke, confirming that the elite player was able to maintain high stance stability when executing the cueing movement. Results presented in the present study can serve as a reference for practitioners and scientists to detect error, enhance training, and improve performance in snooker. For practical applications, snooker players are advised to stabilise their shoulder during the cueing movement and deliver the cue stick primarily via elbow movements.","PeriodicalId":32633,"journal":{"name":"Physical Activity and Health","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Acquiring Expertise in Precision Sport – What Can We Learn from an Elite Snooker Player?\",\"authors\":\"P. Kong, J. Pan, D. Chu, P. Cheung, P. Lau\",\"doi\":\"10.5334/paah.111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Snooker can be an attractive life-long physical activity, given its popularity across all age groups in Asia and Europe. However, scientific research on the cueing movement is limited. This case study presented the biomechanical profiles of the cueing movement in an elite male snooker player (age 37 years old, height 173 cm, body mass 70 kg). Kinematics of the upper limb and cue stick, were examined in five selected snooker tasks (warm-up, stun, top spin, back spin, and stop shots) using the Vicon motion capture system. Ground reaction forces and centre of pressure characteristics were recorded using two Kistler force platforms. Results showed that the cueing movement was contributed primarily by elbow flexion/extension and much less wrist flexion/extension. The high degree of cue stick position overlap between the practice swing and final stroke indicated high level of cueing precision. Weight transfer between feet revealed a slight lean towards the left foot throughout the final stroke, confirming that the elite player was able to maintain high stance stability when executing the cueing movement. Results presented in the present study can serve as a reference for practitioners and scientists to detect error, enhance training, and improve performance in snooker. For practical applications, snooker players are advised to stabilise their shoulder during the cueing movement and deliver the cue stick primarily via elbow movements.\",\"PeriodicalId\":32633,\"journal\":{\"name\":\"Physical Activity and Health\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Activity and Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5334/paah.111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Activity and Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5334/paah.111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Acquiring Expertise in Precision Sport – What Can We Learn from an Elite Snooker Player?
Snooker can be an attractive life-long physical activity, given its popularity across all age groups in Asia and Europe. However, scientific research on the cueing movement is limited. This case study presented the biomechanical profiles of the cueing movement in an elite male snooker player (age 37 years old, height 173 cm, body mass 70 kg). Kinematics of the upper limb and cue stick, were examined in five selected snooker tasks (warm-up, stun, top spin, back spin, and stop shots) using the Vicon motion capture system. Ground reaction forces and centre of pressure characteristics were recorded using two Kistler force platforms. Results showed that the cueing movement was contributed primarily by elbow flexion/extension and much less wrist flexion/extension. The high degree of cue stick position overlap between the practice swing and final stroke indicated high level of cueing precision. Weight transfer between feet revealed a slight lean towards the left foot throughout the final stroke, confirming that the elite player was able to maintain high stance stability when executing the cueing movement. Results presented in the present study can serve as a reference for practitioners and scientists to detect error, enhance training, and improve performance in snooker. For practical applications, snooker players are advised to stabilise their shoulder during the cueing movement and deliver the cue stick primarily via elbow movements.