{"title":"电泳沉积氮化硼纳米片在铜表面的腐蚀行为","authors":"A. Nadeem, M. Raza","doi":"10.54693/piche.04929","DOIUrl":null,"url":null,"abstract":"The prime purpose of this research study is to determine the possibility of corrosion protection offered by boron nitride nanosheets (BNNSs) coated on pure Copper (Cu) strip through electrophoretic deposition (EPD). BNNSs suspension was developed by sonicating hexagonal boron nitride in isopropyl alcohol for 35 h prior to centrifugal partitioning of the supernatant solution, which contained BNNSs having thickness of ca. 11 nm as shown by atomic force microscopy. BNNSs deposition on copper substrate was processed in an EPD electrochemical cell arrangement keeping Cu metal as cathode and platinum as anode. The consequent BNNSs coating on the substrate was critically confirmed through series of microscopies adopting scanning electron, atomic force, and Fourier transform infrared. Energy dispersive x-ray analysis and x-ray diffraction techniques inferred the characterization positively. Tafel analysis and electrochemical impedance spectroscopy both were implied in order to evaluate  the corrosion behavior of coatings developed on substrate copper. The former confirmed an approximate sixfold enhancement in anti-corrosion capacity of copper protected by BN nanosheets than its bare form. The later, EIS analysis indicated a high impedance and charge transfer resistance ability of BNNSs coatings.","PeriodicalId":17383,"journal":{"name":"Journal of the Pakistan Institute of Chemical Engineers","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corrosion behavior of electrophoretically deposited boron nitride nanosheets on copper\",\"authors\":\"A. Nadeem, M. Raza\",\"doi\":\"10.54693/piche.04929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The prime purpose of this research study is to determine the possibility of corrosion protection offered by boron nitride nanosheets (BNNSs) coated on pure Copper (Cu) strip through electrophoretic deposition (EPD). BNNSs suspension was developed by sonicating hexagonal boron nitride in isopropyl alcohol for 35 h prior to centrifugal partitioning of the supernatant solution, which contained BNNSs having thickness of ca. 11 nm as shown by atomic force microscopy. BNNSs deposition on copper substrate was processed in an EPD electrochemical cell arrangement keeping Cu metal as cathode and platinum as anode. The consequent BNNSs coating on the substrate was critically confirmed through series of microscopies adopting scanning electron, atomic force, and Fourier transform infrared. Energy dispersive x-ray analysis and x-ray diffraction techniques inferred the characterization positively. Tafel analysis and electrochemical impedance spectroscopy both were implied in order to evaluate  the corrosion behavior of coatings developed on substrate copper. The former confirmed an approximate sixfold enhancement in anti-corrosion capacity of copper protected by BN nanosheets than its bare form. The later, EIS analysis indicated a high impedance and charge transfer resistance ability of BNNSs coatings.\",\"PeriodicalId\":17383,\"journal\":{\"name\":\"Journal of the Pakistan Institute of Chemical Engineers\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2021-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Pakistan Institute of Chemical Engineers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54693/piche.04929\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Pakistan Institute of Chemical Engineers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54693/piche.04929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Corrosion behavior of electrophoretically deposited boron nitride nanosheets on copper
The prime purpose of this research study is to determine the possibility of corrosion protection offered by boron nitride nanosheets (BNNSs) coated on pure Copper (Cu) strip through electrophoretic deposition (EPD). BNNSs suspension was developed by sonicating hexagonal boron nitride in isopropyl alcohol for 35 h prior to centrifugal partitioning of the supernatant solution, which contained BNNSs having thickness of ca. 11 nm as shown by atomic force microscopy. BNNSs deposition on copper substrate was processed in an EPD electrochemical cell arrangement keeping Cu metal as cathode and platinum as anode. The consequent BNNSs coating on the substrate was critically confirmed through series of microscopies adopting scanning electron, atomic force, and Fourier transform infrared. Energy dispersive x-ray analysis and x-ray diffraction techniques inferred the characterization positively. Tafel analysis and electrochemical impedance spectroscopy both were implied in order to evaluate  the corrosion behavior of coatings developed on substrate copper. The former confirmed an approximate sixfold enhancement in anti-corrosion capacity of copper protected by BN nanosheets than its bare form. The later, EIS analysis indicated a high impedance and charge transfer resistance ability of BNNSs coatings.