基于多项式分划的振荡积分算子的尖锐估计

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
L. Guth, J. Hickman, Marina Iliopoulou
{"title":"基于多项式分划的振荡积分算子的尖锐估计","authors":"L. Guth, J. Hickman, Marina Iliopoulou","doi":"10.4310/acta.2019.v223.n2.a2","DOIUrl":null,"url":null,"abstract":"The sharp range of $L^p$-estimates for the class of H\\\"ormander-type oscillatory integral operators is established in all dimensions under a positive-definite assumption on the phase. This is achieved by generalising a recent approach of the first author for studying the Fourier extension operator, which utilises polynomial partitioning arguments.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2017-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"Sharp estimates for oscillatory integral operators via polynomial partitioning\",\"authors\":\"L. Guth, J. Hickman, Marina Iliopoulou\",\"doi\":\"10.4310/acta.2019.v223.n2.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sharp range of $L^p$-estimates for the class of H\\\\\\\"ormander-type oscillatory integral operators is established in all dimensions under a positive-definite assumption on the phase. This is achieved by generalising a recent approach of the first author for studying the Fourier extension operator, which utilises polynomial partitioning arguments.\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2017-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/acta.2019.v223.n2.a2\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/acta.2019.v223.n2.a2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 55

摘要

在相位的正定假设下,在所有维度上建立了一类H型振荡积分算子的$L^p$-估计的尖锐范围。这是通过推广第一作者最近研究傅立叶扩展算子的方法来实现的,该方法利用多项式划分自变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sharp estimates for oscillatory integral operators via polynomial partitioning
The sharp range of $L^p$-estimates for the class of H\"ormander-type oscillatory integral operators is established in all dimensions under a positive-definite assumption on the phase. This is achieved by generalising a recent approach of the first author for studying the Fourier extension operator, which utilises polynomial partitioning arguments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信