非线性Zakharov‐Kuznetsov修正等宽方程多孤立波解的解析和符号计算方法的结构

IF 2.1 3区 数学 Q1 MATHEMATICS, APPLIED
M. Iqbal, A. Seadawy, D. Lu, Zhengdi Zhang
{"title":"非线性Zakharov‐Kuznetsov修正等宽方程多孤立波解的解析和符号计算方法的结构","authors":"M. Iqbal, A. Seadawy, D. Lu, Zhengdi Zhang","doi":"10.1002/num.23033","DOIUrl":null,"url":null,"abstract":"The nonlinear two dimensional Zakharov‐Kuznetsov modified equal width equation investigated under the observation of extended modified rational expansion method and determined the multiple solitary wave solutions. The interested and important things in this work is the multiple solitary wave solutions which have various kinds of physical structure including anti‐kink soliton, travelling wave solutions, bright soliton, kink soliton, dark soliton, kink bright and dark solitons, anti‐kink bright and dark solitons. In our knowledge investigated various kinds of solitary solutions found first time under one method in the existing literatures. The constructed multiple solutions for nonlinear ZK‐MEW equation will play keen role in the investigation of different physical structure in nonlinear sciences. The investigated work prove that applied method is very efficient, reliable, and powerful.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"39 1","pages":"3987 - 4006"},"PeriodicalIF":2.1000,"publicationDate":"2023-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure of analytical and symbolic computational approach of multiple solitary wave solutions for nonlinear Zakharov‐Kuznetsov modified equal width equation\",\"authors\":\"M. Iqbal, A. Seadawy, D. Lu, Zhengdi Zhang\",\"doi\":\"10.1002/num.23033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The nonlinear two dimensional Zakharov‐Kuznetsov modified equal width equation investigated under the observation of extended modified rational expansion method and determined the multiple solitary wave solutions. The interested and important things in this work is the multiple solitary wave solutions which have various kinds of physical structure including anti‐kink soliton, travelling wave solutions, bright soliton, kink soliton, dark soliton, kink bright and dark solitons, anti‐kink bright and dark solitons. In our knowledge investigated various kinds of solitary solutions found first time under one method in the existing literatures. The constructed multiple solutions for nonlinear ZK‐MEW equation will play keen role in the investigation of different physical structure in nonlinear sciences. The investigated work prove that applied method is very efficient, reliable, and powerful.\",\"PeriodicalId\":19443,\"journal\":{\"name\":\"Numerical Methods for Partial Differential Equations\",\"volume\":\"39 1\",\"pages\":\"3987 - 4006\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Methods for Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/num.23033\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Methods for Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23033","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在扩展修正有理展开法的观测下,研究了非线性二维Zakharov‐Kuznetsov修正等宽方程,并确定了多个孤立波解。本工作感兴趣和重要的是具有各种物理结构的多重孤立波解,包括反扭结孤子、行波解、亮孤子、扭结孤子、暗孤子、扭结明暗孤子、反扭结明暗孤子。据我们所知,研究了在现有文献中首次用一种方法找到的各种孤立解。构造的非线性ZK-MEW方程的多重解将在非线性科学中研究不同的物理结构中发挥重要作用。研究工作证明了该方法的有效性、可靠性和强大性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure of analytical and symbolic computational approach of multiple solitary wave solutions for nonlinear Zakharov‐Kuznetsov modified equal width equation
The nonlinear two dimensional Zakharov‐Kuznetsov modified equal width equation investigated under the observation of extended modified rational expansion method and determined the multiple solitary wave solutions. The interested and important things in this work is the multiple solitary wave solutions which have various kinds of physical structure including anti‐kink soliton, travelling wave solutions, bright soliton, kink soliton, dark soliton, kink bright and dark solitons, anti‐kink bright and dark solitons. In our knowledge investigated various kinds of solitary solutions found first time under one method in the existing literatures. The constructed multiple solutions for nonlinear ZK‐MEW equation will play keen role in the investigation of different physical structure in nonlinear sciences. The investigated work prove that applied method is very efficient, reliable, and powerful.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
2.60%
发文量
81
审稿时长
9 months
期刊介绍: An international journal that aims to cover research into the development and analysis of new methods for the numerical solution of partial differential equations, it is intended that it be readily readable by and directed to a broad spectrum of researchers into numerical methods for partial differential equations throughout science and engineering. The numerical methods and techniques themselves are emphasized rather than the specific applications. The Journal seeks to be interdisciplinary, while retaining the common thread of applied numerical analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信