等时哈密顿系统的Kolmogorov算法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Rita Mastroianni, C. Efthymiopoulos
{"title":"等时哈密顿系统的Kolmogorov算法","authors":"Rita Mastroianni, C. Efthymiopoulos","doi":"10.3934/mine.2023035","DOIUrl":null,"url":null,"abstract":"We present a Kolmogorov-like algorithm for the computation of a normal form in the neighborhood of an invariant torus in 'isochronous' Hamiltonian systems, i.e., systems with Hamiltonians of the form $ {\\mathcal{H}} = {\\mathcal{H}}_0+\\varepsilon {\\mathcal{H}}_1 $ where $ {\\mathcal{H}}_0 $ is the Hamiltonian of $ N $ linear oscillators, and $ {\\mathcal{H}}_1 $ is expandable as a polynomial series in the oscillators' canonical variables. This method can be regarded as a normal form analogue of a corresponding Lindstedt method for coupled oscillators. We comment on the possible use of the Lindstedt method itself under two distinct schemes, i.e., one producing series analogous to those of the Birkhoff normal form scheme, and another, analogous to the Kolomogorov normal form scheme in which we fix in advance the frequency of the torus.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Kolmogorov algorithm for isochronous Hamiltonian systems\",\"authors\":\"Rita Mastroianni, C. Efthymiopoulos\",\"doi\":\"10.3934/mine.2023035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a Kolmogorov-like algorithm for the computation of a normal form in the neighborhood of an invariant torus in 'isochronous' Hamiltonian systems, i.e., systems with Hamiltonians of the form $ {\\\\mathcal{H}} = {\\\\mathcal{H}}_0+\\\\varepsilon {\\\\mathcal{H}}_1 $ where $ {\\\\mathcal{H}}_0 $ is the Hamiltonian of $ N $ linear oscillators, and $ {\\\\mathcal{H}}_1 $ is expandable as a polynomial series in the oscillators' canonical variables. This method can be regarded as a normal form analogue of a corresponding Lindstedt method for coupled oscillators. We comment on the possible use of the Lindstedt method itself under two distinct schemes, i.e., one producing series analogous to those of the Birkhoff normal form scheme, and another, analogous to the Kolomogorov normal form scheme in which we fix in advance the frequency of the torus.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mine.2023035\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mine.2023035","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种类似kolmogorov的算法,用于计算“等时”哈密顿系统中不变环面邻域上的范式,即哈密顿量为$ {\mathcal{H}}_0+\varepsilon {\mathcal{H}}_1 $的系统,其中$ {\mathcal{H} _0 $是$ N $线性振子的哈密顿量,并且$ {\mathcal{H}}_1 $可展开为振子正则变量中的多项式级数。这种方法可以看作是耦合振荡器相应的Lindstedt方法的正规模拟。我们评论了Lindstedt方法本身在两种不同格式下的可能使用,即,一种产生类似于Birkhoff范式格式的级数,另一种产生类似于Kolomogorov范式格式的级数,其中我们提前固定了环面的频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kolmogorov algorithm for isochronous Hamiltonian systems
We present a Kolmogorov-like algorithm for the computation of a normal form in the neighborhood of an invariant torus in 'isochronous' Hamiltonian systems, i.e., systems with Hamiltonians of the form $ {\mathcal{H}} = {\mathcal{H}}_0+\varepsilon {\mathcal{H}}_1 $ where $ {\mathcal{H}}_0 $ is the Hamiltonian of $ N $ linear oscillators, and $ {\mathcal{H}}_1 $ is expandable as a polynomial series in the oscillators' canonical variables. This method can be regarded as a normal form analogue of a corresponding Lindstedt method for coupled oscillators. We comment on the possible use of the Lindstedt method itself under two distinct schemes, i.e., one producing series analogous to those of the Birkhoff normal form scheme, and another, analogous to the Kolomogorov normal form scheme in which we fix in advance the frequency of the torus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信