{"title":"变分的积分分解","authors":"Hsin-Chuang Chou","doi":"10.1007/s10455-023-09908-x","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces a notion of decompositions of integral varifolds into countably many integral varifolds, and the existence of such decomposition of integral varifolds whose first variation is representable by integration is established. However, the decompositions may fail to be unique. Furthermore, this result can be generalized by replacing the class of integral varifolds with some classes of rectifiable varifolds whose density is uniformly bounded from below; for these classes, we also prove a general version of the compactness theorem for integral varifolds.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Integral decompositions of varifolds\",\"authors\":\"Hsin-Chuang Chou\",\"doi\":\"10.1007/s10455-023-09908-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper introduces a notion of decompositions of integral varifolds into countably many integral varifolds, and the existence of such decomposition of integral varifolds whose first variation is representable by integration is established. However, the decompositions may fail to be unique. Furthermore, this result can be generalized by replacing the class of integral varifolds with some classes of rectifiable varifolds whose density is uniformly bounded from below; for these classes, we also prove a general version of the compactness theorem for integral varifolds.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-023-09908-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09908-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper introduces a notion of decompositions of integral varifolds into countably many integral varifolds, and the existence of such decomposition of integral varifolds whose first variation is representable by integration is established. However, the decompositions may fail to be unique. Furthermore, this result can be generalized by replacing the class of integral varifolds with some classes of rectifiable varifolds whose density is uniformly bounded from below; for these classes, we also prove a general version of the compactness theorem for integral varifolds.