变分的积分分解

Pub Date : 2023-06-21 DOI:10.1007/s10455-023-09908-x
Hsin-Chuang Chou
{"title":"变分的积分分解","authors":"Hsin-Chuang Chou","doi":"10.1007/s10455-023-09908-x","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces a notion of decompositions of integral varifolds into countably many integral varifolds, and the existence of such decomposition of integral varifolds whose first variation is representable by integration is established. However, the decompositions may fail to be unique. Furthermore, this result can be generalized by replacing the class of integral varifolds with some classes of rectifiable varifolds whose density is uniformly bounded from below; for these classes, we also prove a general version of the compactness theorem for integral varifolds.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Integral decompositions of varifolds\",\"authors\":\"Hsin-Chuang Chou\",\"doi\":\"10.1007/s10455-023-09908-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper introduces a notion of decompositions of integral varifolds into countably many integral varifolds, and the existence of such decomposition of integral varifolds whose first variation is representable by integration is established. However, the decompositions may fail to be unique. Furthermore, this result can be generalized by replacing the class of integral varifolds with some classes of rectifiable varifolds whose density is uniformly bounded from below; for these classes, we also prove a general version of the compactness theorem for integral varifolds.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-023-09908-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09908-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文引入了将积分变分分解为可数多个积分变分的概念,并证明了第一个变分可以用积分表示的积分变分这种分解的存在性。然而,分解可能不是唯一的。此外,这一结果可以通过用一些密度从下一致有界的可直变分替换积分变分类来推广;对于这些类,我们还证明了积分变分紧致性定理的一般形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Integral decompositions of varifolds

分享
查看原文
Integral decompositions of varifolds

This paper introduces a notion of decompositions of integral varifolds into countably many integral varifolds, and the existence of such decomposition of integral varifolds whose first variation is representable by integration is established. However, the decompositions may fail to be unique. Furthermore, this result can be generalized by replacing the class of integral varifolds with some classes of rectifiable varifolds whose density is uniformly bounded from below; for these classes, we also prove a general version of the compactness theorem for integral varifolds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信