{"title":"超高体积粉煤灰复合材料的工程性能","authors":"H. Myadaraboina, C. Gunasekara, D. Law","doi":"10.1080/23789689.2022.2033938","DOIUrl":null,"url":null,"abstract":"ABSTRACT The addition of a small quantity of lime has been recommended to enhance the early strength of High-Volume Fly Ash Concrete. However, the quantity of lime may not be adequate in the case of Very High Volume Fly Ash Concrete (VHVFAC). This study compares the mechanical properties of VHVFAC with 80% cement replacement with ultrafine fly ash with the addition of lime and silica fume (SF), with that of PC concrete over a 90-day period. Correlation between the compressive strength and other mechanical properties of VHVFAC are presented. The use of SF enhanced the mechanical properties of the VHVFAC, with the increase more predominant at early age. VHVFAC exhibited similar mechanical performance with PC concrete by the end of the 90 days.","PeriodicalId":45395,"journal":{"name":"Sustainable and Resilient Infrastructure","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering properties of very high volume fly ash composite\",\"authors\":\"H. Myadaraboina, C. Gunasekara, D. Law\",\"doi\":\"10.1080/23789689.2022.2033938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The addition of a small quantity of lime has been recommended to enhance the early strength of High-Volume Fly Ash Concrete. However, the quantity of lime may not be adequate in the case of Very High Volume Fly Ash Concrete (VHVFAC). This study compares the mechanical properties of VHVFAC with 80% cement replacement with ultrafine fly ash with the addition of lime and silica fume (SF), with that of PC concrete over a 90-day period. Correlation between the compressive strength and other mechanical properties of VHVFAC are presented. The use of SF enhanced the mechanical properties of the VHVFAC, with the increase more predominant at early age. VHVFAC exhibited similar mechanical performance with PC concrete by the end of the 90 days.\",\"PeriodicalId\":45395,\"journal\":{\"name\":\"Sustainable and Resilient Infrastructure\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable and Resilient Infrastructure\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23789689.2022.2033938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable and Resilient Infrastructure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23789689.2022.2033938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Engineering properties of very high volume fly ash composite
ABSTRACT The addition of a small quantity of lime has been recommended to enhance the early strength of High-Volume Fly Ash Concrete. However, the quantity of lime may not be adequate in the case of Very High Volume Fly Ash Concrete (VHVFAC). This study compares the mechanical properties of VHVFAC with 80% cement replacement with ultrafine fly ash with the addition of lime and silica fume (SF), with that of PC concrete over a 90-day period. Correlation between the compressive strength and other mechanical properties of VHVFAC are presented. The use of SF enhanced the mechanical properties of the VHVFAC, with the increase more predominant at early age. VHVFAC exhibited similar mechanical performance with PC concrete by the end of the 90 days.
期刊介绍:
Sustainable and Resilient Infrastructure is an interdisciplinary journal that focuses on the sustainable development of resilient communities.
Sustainability is defined in relation to the ability of infrastructure to address the needs of the present without sacrificing the ability of future generations to meet their needs. Resilience is considered in relation to both natural hazards (like earthquakes, tsunami, hurricanes, cyclones, tornado, flooding and drought) and anthropogenic hazards (like human errors and malevolent attacks.) Resilience is taken to depend both on the performance of the built and modified natural environment and on the contextual characteristics of social, economic and political institutions. Sustainability and resilience are considered both for physical and non-physical infrastructure.