保温时间对铝与钢电阻点焊性能的影响

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xianming Meng, Siwei Li, Liting Shi, Yongqiang Zhang, Yajun Chen, Sai Zhang, Hao Wu
{"title":"保温时间对铝与钢电阻点焊性能的影响","authors":"Xianming Meng, Siwei Li, Liting Shi, Yongqiang Zhang, Yajun Chen, Sai Zhang, Hao Wu","doi":"10.1080/13621718.2022.2080448","DOIUrl":null,"url":null,"abstract":"The effects of welding hold time on weld quality of aluminium alloy to dual-phase steel resistance spot welds were studied. Results demonstrated that there existed an optimum range of hold time (350∼500 ms), within which the largest weld nugget diameter (7.6 mm), thinnest intermetallic compound (IMC) layer (1∼5 µm) and maximum tensile shear peak load (4.7 kN) were obtained. Too short hold time led to shrinkage, small weld nugget and thick IMC layer due to reduced heat dissipation after removing electrodes, thus resulting in low tensile peak load and brittle fracture along the IMC layer. While too long hold time, i.e. 750 ms, produced a smaller weld nugget diameter due to more rapid heat dissipation.","PeriodicalId":21729,"journal":{"name":"Science and Technology of Welding and Joining","volume":"27 1","pages":"522 - 532"},"PeriodicalIF":3.1000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Effect of hold time on resistance spot weldability of aluminium to steel\",\"authors\":\"Xianming Meng, Siwei Li, Liting Shi, Yongqiang Zhang, Yajun Chen, Sai Zhang, Hao Wu\",\"doi\":\"10.1080/13621718.2022.2080448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effects of welding hold time on weld quality of aluminium alloy to dual-phase steel resistance spot welds were studied. Results demonstrated that there existed an optimum range of hold time (350∼500 ms), within which the largest weld nugget diameter (7.6 mm), thinnest intermetallic compound (IMC) layer (1∼5 µm) and maximum tensile shear peak load (4.7 kN) were obtained. Too short hold time led to shrinkage, small weld nugget and thick IMC layer due to reduced heat dissipation after removing electrodes, thus resulting in low tensile peak load and brittle fracture along the IMC layer. While too long hold time, i.e. 750 ms, produced a smaller weld nugget diameter due to more rapid heat dissipation.\",\"PeriodicalId\":21729,\"journal\":{\"name\":\"Science and Technology of Welding and Joining\",\"volume\":\"27 1\",\"pages\":\"522 - 532\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2022-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology of Welding and Joining\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/13621718.2022.2080448\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Welding and Joining","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/13621718.2022.2080448","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

研究了保温时间对铝合金与双相钢电阻点焊焊缝质量的影响。结果表明,在最佳保温时间范围(350 ~ 500 ms)内,可获得最大熔核直径(7.6 mm)、最薄金属间化合物(IMC)层(1 ~ 5µm)和最大拉伸剪切峰值载荷(4.7 kN)。保温时间过短,由于去电极后散热减少,导致收缩,焊核小,IMC层变厚,导致拉伸峰值载荷低,沿IMC层发生脆性断裂。而保温时间过长,即750 ms,由于散热更快,产生的焊核直径较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of hold time on resistance spot weldability of aluminium to steel
The effects of welding hold time on weld quality of aluminium alloy to dual-phase steel resistance spot welds were studied. Results demonstrated that there existed an optimum range of hold time (350∼500 ms), within which the largest weld nugget diameter (7.6 mm), thinnest intermetallic compound (IMC) layer (1∼5 µm) and maximum tensile shear peak load (4.7 kN) were obtained. Too short hold time led to shrinkage, small weld nugget and thick IMC layer due to reduced heat dissipation after removing electrodes, thus resulting in low tensile peak load and brittle fracture along the IMC layer. While too long hold time, i.e. 750 ms, produced a smaller weld nugget diameter due to more rapid heat dissipation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science and Technology of Welding and Joining
Science and Technology of Welding and Joining 工程技术-材料科学:综合
CiteScore
6.10
自引率
12.10%
发文量
79
审稿时长
1.7 months
期刊介绍: Science and Technology of Welding and Joining is an international peer-reviewed journal covering both the basic science and applied technology of welding and joining. Its comprehensive scope encompasses all welding and joining techniques (brazing, soldering, mechanical joining, etc.) and aspects such as characterisation of heat sources, mathematical modelling of transport phenomena, weld pool solidification, phase transformations in weldments, microstructure-property relationships, welding processes, weld sensing, control and automation, neural network applications, and joining of advanced materials, including plastics and composites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信