三角形上的分段收缩映射

IF 0.4 Q4 MATHEMATICS
Samuel Everett
{"title":"三角形上的分段收缩映射","authors":"Samuel Everett","doi":"10.1080/1726037X.2020.1847765","DOIUrl":null,"url":null,"abstract":"Abstract We study the dynamics of a geometric piecewise map defined on the set of three pairwise nonparallel, nonconcurrent lines in R2. The geometric map of study may be analogized to the billiard map with a different reflection rule so that each iteration is a contraction over the space, thereby providing asymptotic behavior of interest. Our study puts particular emphasis on the behavior of periodic orbits generated by the map, with description of their geometry and bifurcation behavior. We establish that for any initial point in the space, the orbit will converge to a fixed point or periodic orbit, and we demonstrate that there exists an infinite variety of periodic orbits the orbits may converge to, dependent on the parameters of the underlying space.","PeriodicalId":42788,"journal":{"name":"Journal of Dynamical Systems and Geometric Theories","volume":"18 1","pages":"183 - 192"},"PeriodicalIF":0.4000,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1726037X.2020.1847765","citationCount":"1","resultStr":"{\"title\":\"A Piecewise Contractive Map on Triangles\",\"authors\":\"Samuel Everett\",\"doi\":\"10.1080/1726037X.2020.1847765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study the dynamics of a geometric piecewise map defined on the set of three pairwise nonparallel, nonconcurrent lines in R2. The geometric map of study may be analogized to the billiard map with a different reflection rule so that each iteration is a contraction over the space, thereby providing asymptotic behavior of interest. Our study puts particular emphasis on the behavior of periodic orbits generated by the map, with description of their geometry and bifurcation behavior. We establish that for any initial point in the space, the orbit will converge to a fixed point or periodic orbit, and we demonstrate that there exists an infinite variety of periodic orbits the orbits may converge to, dependent on the parameters of the underlying space.\",\"PeriodicalId\":42788,\"journal\":{\"name\":\"Journal of Dynamical Systems and Geometric Theories\",\"volume\":\"18 1\",\"pages\":\"183 - 192\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/1726037X.2020.1847765\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamical Systems and Geometric Theories\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1726037X.2020.1847765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamical Systems and Geometric Theories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1726037X.2020.1847765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要研究了空间R2中由三条非并行、非并发直线组成的几何分段映射的动力学问题。所研究的几何映射可以被类比为具有不同反射规则的台球映射,以便每次迭代都是空间上的收缩,从而提供感兴趣的渐近行为。我们的研究特别强调了由地图生成的周期轨道的行为,并描述了它们的几何形状和分岔行为。我们建立了对于空间中的任何初始点,轨道都收敛于一个不动点或周期轨道,并证明了存在无穷多种周期轨道,这些轨道可以收敛于依赖于底层空间参数的周期轨道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Piecewise Contractive Map on Triangles
Abstract We study the dynamics of a geometric piecewise map defined on the set of three pairwise nonparallel, nonconcurrent lines in R2. The geometric map of study may be analogized to the billiard map with a different reflection rule so that each iteration is a contraction over the space, thereby providing asymptotic behavior of interest. Our study puts particular emphasis on the behavior of periodic orbits generated by the map, with description of their geometry and bifurcation behavior. We establish that for any initial point in the space, the orbit will converge to a fixed point or periodic orbit, and we demonstrate that there exists an infinite variety of periodic orbits the orbits may converge to, dependent on the parameters of the underlying space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信