{"title":"最多有21个顶点的严格Deza图的枚举","authors":"S. Goryainov, Dmitry Panasenko, L. Shalaginov","doi":"10.33048/semi.2021.18.107","DOIUrl":null,"url":null,"abstract":"A Deza graph Γ with parameters ( v , k , b , a ) is a k -regular graph with v vertices such that any two distinct vertices have b or a common neighbours, where b > a . A Deza graph of diameter 2 which is not a strongly regular graph is called a strictly Deza graph. We find all 139 strictly Deza graphs up to 21 vertices and list corresponding constructions and properties.","PeriodicalId":45858,"journal":{"name":"Siberian Electronic Mathematical Reports-Sibirskie Elektronnye Matematicheskie Izvestiya","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enumeration of strictly Deza graphs with at most 21 vertices\",\"authors\":\"S. Goryainov, Dmitry Panasenko, L. Shalaginov\",\"doi\":\"10.33048/semi.2021.18.107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Deza graph Γ with parameters ( v , k , b , a ) is a k -regular graph with v vertices such that any two distinct vertices have b or a common neighbours, where b > a . A Deza graph of diameter 2 which is not a strongly regular graph is called a strictly Deza graph. We find all 139 strictly Deza graphs up to 21 vertices and list corresponding constructions and properties.\",\"PeriodicalId\":45858,\"journal\":{\"name\":\"Siberian Electronic Mathematical Reports-Sibirskie Elektronnye Matematicheskie Izvestiya\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siberian Electronic Mathematical Reports-Sibirskie Elektronnye Matematicheskie Izvestiya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33048/semi.2021.18.107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siberian Electronic Mathematical Reports-Sibirskie Elektronnye Matematicheskie Izvestiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33048/semi.2021.18.107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Enumeration of strictly Deza graphs with at most 21 vertices
A Deza graph Γ with parameters ( v , k , b , a ) is a k -regular graph with v vertices such that any two distinct vertices have b or a common neighbours, where b > a . A Deza graph of diameter 2 which is not a strongly regular graph is called a strictly Deza graph. We find all 139 strictly Deza graphs up to 21 vertices and list corresponding constructions and properties.