向量李超代数对某些分裂超流形的作用

Q3 Mathematics
A. Onishchik
{"title":"向量李超代数对某些分裂超流形的作用","authors":"A. Onishchik","doi":"10.46298/cm.10455","DOIUrl":null,"url":null,"abstract":"The \"curved\" super Grassmannian is the supervariety of subsupervarieties of\npurely odd dimension $k$ in a~supervariety of purely odd dimension $n$, unlike\nthe \"usual\" super Grassmannian which is the supervariety of linear\nsubsuperspacies of purely odd dimension $k$ in a~superspace of purely odd\ndimension $n$. The Lie superalgebras of all and Hamiltonian vector fields on\nthe superpoint are realized as Lie superalgebras of derivations of the\nstructure sheaves of certain \"curved\" super Grassmannians,","PeriodicalId":37836,"journal":{"name":"Communications in Mathematics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Action of vectorial Lie superalgebras on some split supermanifolds\",\"authors\":\"A. Onishchik\",\"doi\":\"10.46298/cm.10455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The \\\"curved\\\" super Grassmannian is the supervariety of subsupervarieties of\\npurely odd dimension $k$ in a~supervariety of purely odd dimension $n$, unlike\\nthe \\\"usual\\\" super Grassmannian which is the supervariety of linear\\nsubsuperspacies of purely odd dimension $k$ in a~superspace of purely odd\\ndimension $n$. The Lie superalgebras of all and Hamiltonian vector fields on\\nthe superpoint are realized as Lie superalgebras of derivations of the\\nstructure sheaves of certain \\\"curved\\\" super Grassmannians,\",\"PeriodicalId\":37836,\"journal\":{\"name\":\"Communications in Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/cm.10455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/cm.10455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

“弯曲的”超格拉斯曼年是纯奇维$k$的子超变种在纯奇维$n$的超变种,不同于“通常的”超格拉斯曼年是纯奇维$k$的线性子超变种在纯奇维$n$的超变种。所有和哈密顿向量场在叠加点上的李超代数被实现为某些“弯曲的”超格拉斯曼群的结构束的导数的李超代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Action of vectorial Lie superalgebras on some split supermanifolds
The "curved" super Grassmannian is the supervariety of subsupervarieties of purely odd dimension $k$ in a~supervariety of purely odd dimension $n$, unlike the "usual" super Grassmannian which is the supervariety of linear subsuperspacies of purely odd dimension $k$ in a~superspace of purely odd dimension $n$. The Lie superalgebras of all and Hamiltonian vector fields on the superpoint are realized as Lie superalgebras of derivations of the structure sheaves of certain "curved" super Grassmannians,
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematics
Communications in Mathematics Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
26
审稿时长
45 weeks
期刊介绍: Communications in Mathematics publishes research and survey papers in all areas of pure and applied mathematics. To be acceptable for publication, the paper must be significant, original and correct. High quality review papers of interest to a wide range of scientists in mathematics and its applications are equally welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信