{"title":"基于似然参数估计的精确置信区间的数值方法","authors":"Minsoo Jeong","doi":"10.1016/j.jspi.2022.12.006","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a numerical method for obtaining exact confidence intervals<span> of likelihood-based parameter estimators for general multi-parameter models. Although the test inversion method provides exact confidence intervals, it is applicable only to single-parameter models. Our new method can be applied to general multi-parameter models without loss of accuracy, which is in sharp contrast to other multi-parameter extensions of the test inversion. Using Monte Carlo simulations<span>, we show that our method is feasible and provides correct coverage probabilities in finite samples.</span></span></p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A numerical method to obtain exact confidence intervals for likelihood-based parameter estimators\",\"authors\":\"Minsoo Jeong\",\"doi\":\"10.1016/j.jspi.2022.12.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose a numerical method for obtaining exact confidence intervals<span> of likelihood-based parameter estimators for general multi-parameter models. Although the test inversion method provides exact confidence intervals, it is applicable only to single-parameter models. Our new method can be applied to general multi-parameter models without loss of accuracy, which is in sharp contrast to other multi-parameter extensions of the test inversion. Using Monte Carlo simulations<span>, we show that our method is feasible and provides correct coverage probabilities in finite samples.</span></span></p></div>\",\"PeriodicalId\":50039,\"journal\":{\"name\":\"Journal of Statistical Planning and Inference\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Planning and Inference\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378375822001136\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Planning and Inference","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375822001136","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
A numerical method to obtain exact confidence intervals for likelihood-based parameter estimators
We propose a numerical method for obtaining exact confidence intervals of likelihood-based parameter estimators for general multi-parameter models. Although the test inversion method provides exact confidence intervals, it is applicable only to single-parameter models. Our new method can be applied to general multi-parameter models without loss of accuracy, which is in sharp contrast to other multi-parameter extensions of the test inversion. Using Monte Carlo simulations, we show that our method is feasible and provides correct coverage probabilities in finite samples.
期刊介绍:
The Journal of Statistical Planning and Inference offers itself as a multifaceted and all-inclusive bridge between classical aspects of statistics and probability, and the emerging interdisciplinary aspects that have a potential of revolutionizing the subject. While we maintain our traditional strength in statistical inference, design, classical probability, and large sample methods, we also have a far more inclusive and broadened scope to keep up with the new problems that confront us as statisticians, mathematicians, and scientists.
We publish high quality articles in all branches of statistics, probability, discrete mathematics, machine learning, and bioinformatics. We also especially welcome well written and up to date review articles on fundamental themes of statistics, probability, machine learning, and general biostatistics. Thoughtful letters to the editors, interesting problems in need of a solution, and short notes carrying an element of elegance or beauty are equally welcome.