M. You, Jia Song, Z. Wang, Bei Wang, Jingsheng Liu
{"title":"利用350 nm表面浮雕光栅全息光刻技术提高有机太阳能电池效率","authors":"M. You, Jia Song, Z. Wang, Bei Wang, Jingsheng Liu","doi":"10.1166/nnl.2020.3134","DOIUrl":null,"url":null,"abstract":"There was inefficient light absorption in the thin active layers due to optical losses in Organic Solar Cells (OSCs) with relatively large area. Therefore, it is a key issue to have a light trapping structure for highly efficient OSCs. For high performance devices fabrication, a smart\n grating was fabricated using holographic photolithography incorporated with wet etching technology. Scanning electron microscopy (SEM) images of fabrication were employed before/after spin-coating active layer. With the aid of optical finite difference time Domain (FDTD) simulation for optical\n effect, the optimized device structure ITO (1D grating)/PEDOT:PSS (40 nm)/PBDB-T:ITIC (100 nm)/PDINO (5 nm)/Al (100 nm) was obtained. The experimental results showed that when the grating period was 350 nm, depth 40 nm, the power conversion efficiencies (PCE) reached to 9.51%, an apparent\n increase from those of the typical P3HT:PC71BM structure. This work indicates that the diffraction gratings had a potential to realize more efficient organic photovoltaics, if suitable fabrication processing methods can be developed.","PeriodicalId":18871,"journal":{"name":"Nanoscience and Nanotechnology Letters","volume":"12 1","pages":"484-489"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficiency Improvement of Organic Solar Cells Using 350 nm Surface Relief Grating by Holographic Lithography\",\"authors\":\"M. You, Jia Song, Z. Wang, Bei Wang, Jingsheng Liu\",\"doi\":\"10.1166/nnl.2020.3134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There was inefficient light absorption in the thin active layers due to optical losses in Organic Solar Cells (OSCs) with relatively large area. Therefore, it is a key issue to have a light trapping structure for highly efficient OSCs. For high performance devices fabrication, a smart\\n grating was fabricated using holographic photolithography incorporated with wet etching technology. Scanning electron microscopy (SEM) images of fabrication were employed before/after spin-coating active layer. With the aid of optical finite difference time Domain (FDTD) simulation for optical\\n effect, the optimized device structure ITO (1D grating)/PEDOT:PSS (40 nm)/PBDB-T:ITIC (100 nm)/PDINO (5 nm)/Al (100 nm) was obtained. The experimental results showed that when the grating period was 350 nm, depth 40 nm, the power conversion efficiencies (PCE) reached to 9.51%, an apparent\\n increase from those of the typical P3HT:PC71BM structure. This work indicates that the diffraction gratings had a potential to realize more efficient organic photovoltaics, if suitable fabrication processing methods can be developed.\",\"PeriodicalId\":18871,\"journal\":{\"name\":\"Nanoscience and Nanotechnology Letters\",\"volume\":\"12 1\",\"pages\":\"484-489\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscience and Nanotechnology Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/nnl.2020.3134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscience and Nanotechnology Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/nnl.2020.3134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficiency Improvement of Organic Solar Cells Using 350 nm Surface Relief Grating by Holographic Lithography
There was inefficient light absorption in the thin active layers due to optical losses in Organic Solar Cells (OSCs) with relatively large area. Therefore, it is a key issue to have a light trapping structure for highly efficient OSCs. For high performance devices fabrication, a smart
grating was fabricated using holographic photolithography incorporated with wet etching technology. Scanning electron microscopy (SEM) images of fabrication were employed before/after spin-coating active layer. With the aid of optical finite difference time Domain (FDTD) simulation for optical
effect, the optimized device structure ITO (1D grating)/PEDOT:PSS (40 nm)/PBDB-T:ITIC (100 nm)/PDINO (5 nm)/Al (100 nm) was obtained. The experimental results showed that when the grating period was 350 nm, depth 40 nm, the power conversion efficiencies (PCE) reached to 9.51%, an apparent
increase from those of the typical P3HT:PC71BM structure. This work indicates that the diffraction gratings had a potential to realize more efficient organic photovoltaics, if suitable fabrication processing methods can be developed.