基于特征函数的可伸缩变化分析与表示

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Takaaki Tagawa, Y. Tadokoro, T. Yairi
{"title":"基于特征函数的可伸缩变化分析与表示","authors":"Takaaki Tagawa, Y. Tadokoro, T. Yairi","doi":"10.36001/IJPHM.2020.V11I1.2593","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel framework to help human operators- who are domain experts but not necessarily familiar with statistics- analyze a complex system and find unknown changes and causes. Despite the prevalence, researchers have rarely tackled this problem. Our framework focuses on the representation and explanation of changes occurring between two datasets, specifically the normal data and data with the observed changes. We employ two-dimensional scatter plots which can provide comprehensive representation without requiring statistical knowledge. This helps a human operator to intuitively understand the change and the cause. An analysis to find two-attribute pairs whose scatter plots well explain the change does not require high computational complexity owing to the novel characteristic function-based approach. Although a hyper-parameter needs to be determined, our analysis introduces a novel appropriate prior distribution to determine the proper hyper-parameter automatically. The experimental results show that our method presents the change and the cause with the same accuracy as that of the state-of-the-art kernel hypothesis testing approaches, while reducing the computational costs by almost 99% at the maximum for all popular benchmark datasets. The experiment using real vehicle driving data demonstrates the practicality of our framework.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Scalable Change Analysis and Representation Using Characteristic Function\",\"authors\":\"Takaaki Tagawa, Y. Tadokoro, T. Yairi\",\"doi\":\"10.36001/IJPHM.2020.V11I1.2593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel framework to help human operators- who are domain experts but not necessarily familiar with statistics- analyze a complex system and find unknown changes and causes. Despite the prevalence, researchers have rarely tackled this problem. Our framework focuses on the representation and explanation of changes occurring between two datasets, specifically the normal data and data with the observed changes. We employ two-dimensional scatter plots which can provide comprehensive representation without requiring statistical knowledge. This helps a human operator to intuitively understand the change and the cause. An analysis to find two-attribute pairs whose scatter plots well explain the change does not require high computational complexity owing to the novel characteristic function-based approach. Although a hyper-parameter needs to be determined, our analysis introduces a novel appropriate prior distribution to determine the proper hyper-parameter automatically. The experimental results show that our method presents the change and the cause with the same accuracy as that of the state-of-the-art kernel hypothesis testing approaches, while reducing the computational costs by almost 99% at the maximum for all popular benchmark datasets. The experiment using real vehicle driving data demonstrates the practicality of our framework.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36001/IJPHM.2020.V11I1.2593\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/IJPHM.2020.V11I1.2593","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了一个新的框架,以帮助人类操作员-谁是领域专家,但不一定熟悉统计-分析一个复杂的系统,发现未知的变化和原因。尽管这个问题很普遍,但研究人员很少解决这个问题。我们的框架侧重于表示和解释两个数据集之间发生的变化,特别是正常数据和观察到变化的数据。我们采用二维散点图,它可以提供全面的表示,而不需要统计知识。这有助于操作员直观地了解变化及其原因。由于采用了基于特征函数的新方法,寻找散点图能很好地解释变化的双属性对的分析不需要很高的计算复杂度。虽然需要确定超参数,但我们的分析引入了一种新的合适的先验分布来自动确定合适的超参数。实验结果表明,我们的方法以与最先进的核假设检验方法相同的精度呈现变化和原因,同时在所有流行的基准数据集上最大减少了近99%的计算成本。使用真实车辆驾驶数据的实验证明了该框架的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable Change Analysis and Representation Using Characteristic Function
In this paper, we propose a novel framework to help human operators- who are domain experts but not necessarily familiar with statistics- analyze a complex system and find unknown changes and causes. Despite the prevalence, researchers have rarely tackled this problem. Our framework focuses on the representation and explanation of changes occurring between two datasets, specifically the normal data and data with the observed changes. We employ two-dimensional scatter plots which can provide comprehensive representation without requiring statistical knowledge. This helps a human operator to intuitively understand the change and the cause. An analysis to find two-attribute pairs whose scatter plots well explain the change does not require high computational complexity owing to the novel characteristic function-based approach. Although a hyper-parameter needs to be determined, our analysis introduces a novel appropriate prior distribution to determine the proper hyper-parameter automatically. The experimental results show that our method presents the change and the cause with the same accuracy as that of the state-of-the-art kernel hypothesis testing approaches, while reducing the computational costs by almost 99% at the maximum for all popular benchmark datasets. The experiment using real vehicle driving data demonstrates the practicality of our framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信