Yizhou Xu , Haidong Xie , Nan Ji , Yuanqing Chen , Naijin Liu , Xueshuang Xiang
{"title":"基于动态对抗干扰的星座设计强化学习","authors":"Yizhou Xu , Haidong Xie , Nan Ji , Yuanqing Chen , Naijin Liu , Xueshuang Xiang","doi":"10.1016/j.dcan.2023.05.012","DOIUrl":null,"url":null,"abstract":"<div><div>To resist various types of jamming in wireless channels, appropriate constellation modulation is used in wireless communication to ensure a low bit error rate. Due to the complexity and variability of the channel environment, a simple preset constellation is difficult to adapt to all scenarios, so the online constellation optimization method based on Reinforcement Learning (RL) shows its potential. However, the existing RL technology is difficult to ensure the optimal convergence efficiency. Therefore, in this paper, Dynamic Adversarial Interference (DAJ) waveforms are introduced and the DAJ-RL method is proposed by referring to adversarial training in Deep Learning (DL). The algorithm can converge to the optimal state quickly by self-adaptive power and probability direction of dynamic strong adversary of DAJ. In this paper, a rigorous theoretical proof of the symbol error rate is given and it is shown that the method approaches the mathematical limit. Also, numerical and hardware experiments show that the constellations generated by DAJ-RL have the best error rate at all noise levels. In the end, the proposed DAJ-RL method effectively improves the RL-based anti-jamming modulation for cognitive electronic warfare.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"10 5","pages":"Pages 1471-1479"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic adversarial jamming-based reinforcement learning for designing constellations\",\"authors\":\"Yizhou Xu , Haidong Xie , Nan Ji , Yuanqing Chen , Naijin Liu , Xueshuang Xiang\",\"doi\":\"10.1016/j.dcan.2023.05.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To resist various types of jamming in wireless channels, appropriate constellation modulation is used in wireless communication to ensure a low bit error rate. Due to the complexity and variability of the channel environment, a simple preset constellation is difficult to adapt to all scenarios, so the online constellation optimization method based on Reinforcement Learning (RL) shows its potential. However, the existing RL technology is difficult to ensure the optimal convergence efficiency. Therefore, in this paper, Dynamic Adversarial Interference (DAJ) waveforms are introduced and the DAJ-RL method is proposed by referring to adversarial training in Deep Learning (DL). The algorithm can converge to the optimal state quickly by self-adaptive power and probability direction of dynamic strong adversary of DAJ. In this paper, a rigorous theoretical proof of the symbol error rate is given and it is shown that the method approaches the mathematical limit. Also, numerical and hardware experiments show that the constellations generated by DAJ-RL have the best error rate at all noise levels. In the end, the proposed DAJ-RL method effectively improves the RL-based anti-jamming modulation for cognitive electronic warfare.</div></div>\",\"PeriodicalId\":48631,\"journal\":{\"name\":\"Digital Communications and Networks\",\"volume\":\"10 5\",\"pages\":\"Pages 1471-1479\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352864823000937\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864823000937","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Dynamic adversarial jamming-based reinforcement learning for designing constellations
To resist various types of jamming in wireless channels, appropriate constellation modulation is used in wireless communication to ensure a low bit error rate. Due to the complexity and variability of the channel environment, a simple preset constellation is difficult to adapt to all scenarios, so the online constellation optimization method based on Reinforcement Learning (RL) shows its potential. However, the existing RL technology is difficult to ensure the optimal convergence efficiency. Therefore, in this paper, Dynamic Adversarial Interference (DAJ) waveforms are introduced and the DAJ-RL method is proposed by referring to adversarial training in Deep Learning (DL). The algorithm can converge to the optimal state quickly by self-adaptive power and probability direction of dynamic strong adversary of DAJ. In this paper, a rigorous theoretical proof of the symbol error rate is given and it is shown that the method approaches the mathematical limit. Also, numerical and hardware experiments show that the constellations generated by DAJ-RL have the best error rate at all noise levels. In the end, the proposed DAJ-RL method effectively improves the RL-based anti-jamming modulation for cognitive electronic warfare.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.