Clifford系统,调和映射和非负曲率度量

Pub Date : 2022-02-18 DOI:10.2140/pjm.2022.320.391
Chao Qian, Zizhou Tang, Wenjiao Yan
{"title":"Clifford系统,调和映射和非负曲率度量","authors":"Chao Qian, Zizhou Tang, Wenjiao Yan","doi":"10.2140/pjm.2022.320.391","DOIUrl":null,"url":null,"abstract":"Associated with a symmetric Clifford system $\\{P_0, P_1,\\cdots, P_{m}\\}$ on $\\mathbb{R}^{2l}$, there is a canonical vector bundle $\\eta$ over $S^{l-1}$. For $m=4$ and $8$, we construct explicitly its characteristic map, and determine completely when the sphere bundle $S(\\eta)$ associated to $\\eta$ admits a cross-section. These generalize the results in \\cite{St51} and \\cite{Ja58}. As an application, we establish new harmonic representatives of certain elements in homotopy groups of spheres (cf. \\cite{PT97} \\cite{PT98}). By a suitable choice of Clifford system, we construct a metric of non-negative curvature on $S(\\eta)$ which is diffeomorphic to the inhomogeneous focal submanifold $M_+$ of OT-FKM type isoparametric hypersurfaces with $m=3$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clifford systems, harmonic maps and metrics with nonnegative curvature\",\"authors\":\"Chao Qian, Zizhou Tang, Wenjiao Yan\",\"doi\":\"10.2140/pjm.2022.320.391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Associated with a symmetric Clifford system $\\\\{P_0, P_1,\\\\cdots, P_{m}\\\\}$ on $\\\\mathbb{R}^{2l}$, there is a canonical vector bundle $\\\\eta$ over $S^{l-1}$. For $m=4$ and $8$, we construct explicitly its characteristic map, and determine completely when the sphere bundle $S(\\\\eta)$ associated to $\\\\eta$ admits a cross-section. These generalize the results in \\\\cite{St51} and \\\\cite{Ja58}. As an application, we establish new harmonic representatives of certain elements in homotopy groups of spheres (cf. \\\\cite{PT97} \\\\cite{PT98}). By a suitable choice of Clifford system, we construct a metric of non-negative curvature on $S(\\\\eta)$ which is diffeomorphic to the inhomogeneous focal submanifold $M_+$ of OT-FKM type isoparametric hypersurfaces with $m=3$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/pjm.2022.320.391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2022.320.391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与$\mathbb{R}^{2l}$上的对称Clifford系统$\{P_0,P_1,\cdots,P_{m}\}$有关,在$S^{l-1}$之上存在正则向量丛$\eta$。对于$m=4$和$8$,我们显式地构造其特征映射,并完全确定与$\eta$相关的球丛$S(\eta)$何时允许横截面。这些结果推广了\cite{St51}和\cite{Ja58}中的结果。作为一个应用,我们在球面的同伦群中建立了某些元素的新的调和表示(参见cite{PT97}\cite{PT98})。通过Clifford系统的适当选择,我们构造了$S(\eta)$上的非负曲率的度量,它与$M=3$的OT-FKM型等参超曲面的非齐次焦点子流形$M_+$是微分同胚的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Clifford systems, harmonic maps and metrics with nonnegative curvature
Associated with a symmetric Clifford system $\{P_0, P_1,\cdots, P_{m}\}$ on $\mathbb{R}^{2l}$, there is a canonical vector bundle $\eta$ over $S^{l-1}$. For $m=4$ and $8$, we construct explicitly its characteristic map, and determine completely when the sphere bundle $S(\eta)$ associated to $\eta$ admits a cross-section. These generalize the results in \cite{St51} and \cite{Ja58}. As an application, we establish new harmonic representatives of certain elements in homotopy groups of spheres (cf. \cite{PT97} \cite{PT98}). By a suitable choice of Clifford system, we construct a metric of non-negative curvature on $S(\eta)$ which is diffeomorphic to the inhomogeneous focal submanifold $M_+$ of OT-FKM type isoparametric hypersurfaces with $m=3$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信