非阿基米德场的基本光谱

Q3 Mathematics
A. Ammar, F. Boutaf, A. Jeribi
{"title":"非阿基米德场的基本光谱","authors":"A. Ammar, F. Boutaf, A. Jeribi","doi":"10.30970/ms.58.1.82-93","DOIUrl":null,"url":null,"abstract":"In the paper we extend some aspects of the essential spectra theory of linear operators acting in non-Archimedean (or p-adic) Banach spaces. In particular, we establish sufficient conditions for the relations between the essential spectra of the sum of two bounded linear operators and the union of their essential spectra. Moreover, we give essential prerequisites by studying the duality between p-adic upper and p-adic lower semi-Fredholm operators. We close this paper by giving some properties of the essential spectra.","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Essential spectra in non-Archimedean fields\",\"authors\":\"A. Ammar, F. Boutaf, A. Jeribi\",\"doi\":\"10.30970/ms.58.1.82-93\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper we extend some aspects of the essential spectra theory of linear operators acting in non-Archimedean (or p-adic) Banach spaces. In particular, we establish sufficient conditions for the relations between the essential spectra of the sum of two bounded linear operators and the union of their essential spectra. Moreover, we give essential prerequisites by studying the duality between p-adic upper and p-adic lower semi-Fredholm operators. We close this paper by giving some properties of the essential spectra.\",\"PeriodicalId\":37555,\"journal\":{\"name\":\"Matematychni Studii\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematychni Studii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30970/ms.58.1.82-93\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.58.1.82-93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文推广了作用在非阿基米德(或p-adic)Banach空间中的线性算子的本质谱理论的一些方面。特别地,我们建立了两个有界线性算子之和的本质谱与其本质谱并集之间关系的充分条件。此外,我们通过研究p-adic上半Fredholm算子和p-adic下半Fredhol姆算子之间的对偶性,给出了必要的前提条件。我们通过给出本质谱的一些性质来结束本文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Essential spectra in non-Archimedean fields
In the paper we extend some aspects of the essential spectra theory of linear operators acting in non-Archimedean (or p-adic) Banach spaces. In particular, we establish sufficient conditions for the relations between the essential spectra of the sum of two bounded linear operators and the union of their essential spectra. Moreover, we give essential prerequisites by studying the duality between p-adic upper and p-adic lower semi-Fredholm operators. We close this paper by giving some properties of the essential spectra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matematychni Studii
Matematychni Studii Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
38
期刊介绍: Journal is devoted to research in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信