{"title":"可持续纳米纤维的绿色静电纺丝:下一代材料的可持续前沿","authors":"Zeeshan Khatri, F. Ahmed, I. Kim","doi":"10.22581/muet1982.2303.02","DOIUrl":null,"url":null,"abstract":"To fulfil the demand for eco-friendly nanomaterials, electrospinning offers a viable method for creating sustainable nanofibers. This mini review focuses on environmentally friendly and sustainability aspect of nanofibers produced via electrospinning. It examines difficulties and possibilities in ecologically friendly electrospinning, such as selecting environmentally friendly materials, reusing solvents, and using environmentally friendly additives. The use of biodegradable synthetic polymers, hybrid/composite nanofibers for improved performance, and natural polymers from renewable resources are only a few of the green electrospinning approaches that are covered. The review emphasises on green practices and sustainable challenges and opportunities. This review gives insight into green electrospinning techniques and the applications are also highlighted in tissue engineering, environmental remediation, energy storage, and environmentally friendly packaging. Further, the scalability, interdisciplinary cooperation, and regulatory issues are only a few of the obstacles and future directions that are discussed. A greener and more sustainable future in materials science is possible thanks to green electrospinning.","PeriodicalId":44836,"journal":{"name":"Mehran University Research Journal of Engineering and Technology","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green electrospinning of sustainable nanofibers: a sustainable frontier for next-generation materials\",\"authors\":\"Zeeshan Khatri, F. Ahmed, I. Kim\",\"doi\":\"10.22581/muet1982.2303.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To fulfil the demand for eco-friendly nanomaterials, electrospinning offers a viable method for creating sustainable nanofibers. This mini review focuses on environmentally friendly and sustainability aspect of nanofibers produced via electrospinning. It examines difficulties and possibilities in ecologically friendly electrospinning, such as selecting environmentally friendly materials, reusing solvents, and using environmentally friendly additives. The use of biodegradable synthetic polymers, hybrid/composite nanofibers for improved performance, and natural polymers from renewable resources are only a few of the green electrospinning approaches that are covered. The review emphasises on green practices and sustainable challenges and opportunities. This review gives insight into green electrospinning techniques and the applications are also highlighted in tissue engineering, environmental remediation, energy storage, and environmentally friendly packaging. Further, the scalability, interdisciplinary cooperation, and regulatory issues are only a few of the obstacles and future directions that are discussed. A greener and more sustainable future in materials science is possible thanks to green electrospinning.\",\"PeriodicalId\":44836,\"journal\":{\"name\":\"Mehran University Research Journal of Engineering and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mehran University Research Journal of Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22581/muet1982.2303.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mehran University Research Journal of Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22581/muet1982.2303.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Green electrospinning of sustainable nanofibers: a sustainable frontier for next-generation materials
To fulfil the demand for eco-friendly nanomaterials, electrospinning offers a viable method for creating sustainable nanofibers. This mini review focuses on environmentally friendly and sustainability aspect of nanofibers produced via electrospinning. It examines difficulties and possibilities in ecologically friendly electrospinning, such as selecting environmentally friendly materials, reusing solvents, and using environmentally friendly additives. The use of biodegradable synthetic polymers, hybrid/composite nanofibers for improved performance, and natural polymers from renewable resources are only a few of the green electrospinning approaches that are covered. The review emphasises on green practices and sustainable challenges and opportunities. This review gives insight into green electrospinning techniques and the applications are also highlighted in tissue engineering, environmental remediation, energy storage, and environmentally friendly packaging. Further, the scalability, interdisciplinary cooperation, and regulatory issues are only a few of the obstacles and future directions that are discussed. A greener and more sustainable future in materials science is possible thanks to green electrospinning.