{"title":"循环图稳定集多面体Ehrhart环的非Gorenstein轨迹和几乎Gorenstein性质","authors":"Mitsuhiro Miyazaki","doi":"10.11650/tjm/221104","DOIUrl":null,"url":null,"abstract":"Let $R$ be the Ehrhart ring of the stable set polytope of a cycle graph which is not Gorenstein. We describe the non-Gorenstein locus of $\\mathrm{Spec} R$. Further, we show that $R$ is almost Gorenstein. Moreover, we show that the conjecture of Hibi and Tsuchiya is true.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Non-Gorenstein Locus and Almost Gorenstein Property of the Ehrhart Ring of the Stable Set Polytope of a Cycle Graph\",\"authors\":\"Mitsuhiro Miyazaki\",\"doi\":\"10.11650/tjm/221104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $R$ be the Ehrhart ring of the stable set polytope of a cycle graph which is not Gorenstein. We describe the non-Gorenstein locus of $\\\\mathrm{Spec} R$. Further, we show that $R$ is almost Gorenstein. Moreover, we show that the conjecture of Hibi and Tsuchiya is true.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.11650/tjm/221104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.11650/tjm/221104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Non-Gorenstein Locus and Almost Gorenstein Property of the Ehrhart Ring of the Stable Set Polytope of a Cycle Graph
Let $R$ be the Ehrhart ring of the stable set polytope of a cycle graph which is not Gorenstein. We describe the non-Gorenstein locus of $\mathrm{Spec} R$. Further, we show that $R$ is almost Gorenstein. Moreover, we show that the conjecture of Hibi and Tsuchiya is true.