当卡尔顿和佩克遇见傅立叶时

Pub Date : 2021-01-27 DOI:10.5802/aif.3562
F'elix Cabello S'anchez, Alberto Salguero-Alarc'on
{"title":"当卡尔顿和佩克遇见傅立叶时","authors":"F'elix Cabello S'anchez, Alberto Salguero-Alarc'on","doi":"10.5802/aif.3562","DOIUrl":null,"url":null,"abstract":"The paper studies short exact sequences of Banach modules over the convolution algebra $L_1=L_1(G)$, where $G$ is a compact abelian group. The main tool is the notion of a nonlinear $L_1$-centralizer, which in combination with the Fourier transform, is used to produce sequences of $L_1$-modules $0\\rightarrow L_q \\rightarrow Z \\rightarrow L_p \\rightarrow 0$ that are nontrivial as long as the general theory allows it, namely for $p\\in (1,\\infty], q\\in[1,\\infty)$. Concrete examples are worked in detail for the circle group, with applications to the Hardy classes, and the Cantor group.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"When Kalton and Peck met Fourier\",\"authors\":\"F'elix Cabello S'anchez, Alberto Salguero-Alarc'on\",\"doi\":\"10.5802/aif.3562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper studies short exact sequences of Banach modules over the convolution algebra $L_1=L_1(G)$, where $G$ is a compact abelian group. The main tool is the notion of a nonlinear $L_1$-centralizer, which in combination with the Fourier transform, is used to produce sequences of $L_1$-modules $0\\\\rightarrow L_q \\\\rightarrow Z \\\\rightarrow L_p \\\\rightarrow 0$ that are nontrivial as long as the general theory allows it, namely for $p\\\\in (1,\\\\infty], q\\\\in[1,\\\\infty)$. Concrete examples are worked in detail for the circle group, with applications to the Hardy classes, and the Cantor group.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/aif.3562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/aif.3562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了卷积代数$L_1=L_1(G)$上Banach模的短精确序列,其中$G$是紧阿贝尔群。主要工具是非线性$L_1$-集中器的概念,它与傅立叶变换相结合,用于产生$L_1$-模块$0\rightarrow L_q\rightarrow Z\rightrrow L_p\right箭头0$的序列,只要一般理论允许,这些序列是非平凡的,即$p\in(1,\infty],q\in[1,\infty)$。给出了圆群的具体例子,并应用于Hardy类和Cantor群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
When Kalton and Peck met Fourier
The paper studies short exact sequences of Banach modules over the convolution algebra $L_1=L_1(G)$, where $G$ is a compact abelian group. The main tool is the notion of a nonlinear $L_1$-centralizer, which in combination with the Fourier transform, is used to produce sequences of $L_1$-modules $0\rightarrow L_q \rightarrow Z \rightarrow L_p \rightarrow 0$ that are nontrivial as long as the general theory allows it, namely for $p\in (1,\infty], q\in[1,\infty)$. Concrete examples are worked in detail for the circle group, with applications to the Hardy classes, and the Cantor group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信