基于NSTSM算法的SVPWM DFIG直接功率控制

Q3 Energy
H. Benbouhenni, Z. Boudjema, A. Belaidi
{"title":"基于NSTSM算法的SVPWM DFIG直接功率控制","authors":"H. Benbouhenni, Z. Boudjema, A. Belaidi","doi":"10.22068/IJEEE.17.1.1518","DOIUrl":null,"url":null,"abstract":"Abstract: The paper presents a super-twisting sliding mode (STSM) regulator with neural networks (NN) of direct power command (DPC) for controlling the active/reactive power of a doubly-fed induction generator (DFIG) using a two-level space vector pulse width modulation (2L-SVPWM). Traditional DPC strategy with proportional-integral (PI) controllers (DPC-PI) has significantly more active/reactive power ripples, electromagnetic torque ripple, and harmonic distortion (THD) of voltages. The proposed DPC strategy based on a neural super-twisting sliding mode controller (NSTSM) minimizes the THD of stator/rotor voltage, reactive/active power ripple, rotor/stator current, and torque ripples. Also, the DPC method with NSTSM controllers (DPC-NSTSM) is a simple algorithm compared to the vector control method. Both methods are developed and programmed in Matlab on a 1.5MW DFIG-based wind turbines. The simulation studies of the DPC technique with the NSTM algorithm have been performed, and the results of these studies are presented and discussed.","PeriodicalId":39055,"journal":{"name":"Iranian Journal of Electrical and Electronic Engineering","volume":"17 1","pages":"1518-1518"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Direct Power Control With NSTSM Algorithm for DFIG Using SVPWM Technique\",\"authors\":\"H. Benbouhenni, Z. Boudjema, A. Belaidi\",\"doi\":\"10.22068/IJEEE.17.1.1518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract: The paper presents a super-twisting sliding mode (STSM) regulator with neural networks (NN) of direct power command (DPC) for controlling the active/reactive power of a doubly-fed induction generator (DFIG) using a two-level space vector pulse width modulation (2L-SVPWM). Traditional DPC strategy with proportional-integral (PI) controllers (DPC-PI) has significantly more active/reactive power ripples, electromagnetic torque ripple, and harmonic distortion (THD) of voltages. The proposed DPC strategy based on a neural super-twisting sliding mode controller (NSTSM) minimizes the THD of stator/rotor voltage, reactive/active power ripple, rotor/stator current, and torque ripples. Also, the DPC method with NSTSM controllers (DPC-NSTSM) is a simple algorithm compared to the vector control method. Both methods are developed and programmed in Matlab on a 1.5MW DFIG-based wind turbines. The simulation studies of the DPC technique with the NSTM algorithm have been performed, and the results of these studies are presented and discussed.\",\"PeriodicalId\":39055,\"journal\":{\"name\":\"Iranian Journal of Electrical and Electronic Engineering\",\"volume\":\"17 1\",\"pages\":\"1518-1518\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Electrical and Electronic Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22068/IJEEE.17.1.1518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Electrical and Electronic Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22068/IJEEE.17.1.1518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 16

摘要

摘要:提出了一种基于直接功率指令神经网络的超扭曲滑模调节器,用于采用两级空间矢量脉宽调制(2L-SVPWM)控制双馈感应发电机的有功/无功功率。具有比例积分(PI)控制器(DPC-PI)的传统DPC策略具有显著更多的有功/无功功率纹波、电磁转矩纹波和电压谐波失真(THD)。所提出的基于神经超扭曲滑模控制器(NSTSM)的DPC策略最小化了定子/转子电压、无功/有功功率纹波、转子/定子电流和转矩纹波的THD。此外,与矢量控制方法相比,具有NSTSM控制器的DPC方法(DPC-NSTSM)是一种简单的算法。这两种方法都是在基于1.5MW DFIG的风力涡轮机上用Matlab开发和编程的。利用NSTM算法对DPC技术进行了仿真研究,并给出和讨论了这些研究的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct Power Control With NSTSM Algorithm for DFIG Using SVPWM Technique
Abstract: The paper presents a super-twisting sliding mode (STSM) regulator with neural networks (NN) of direct power command (DPC) for controlling the active/reactive power of a doubly-fed induction generator (DFIG) using a two-level space vector pulse width modulation (2L-SVPWM). Traditional DPC strategy with proportional-integral (PI) controllers (DPC-PI) has significantly more active/reactive power ripples, electromagnetic torque ripple, and harmonic distortion (THD) of voltages. The proposed DPC strategy based on a neural super-twisting sliding mode controller (NSTSM) minimizes the THD of stator/rotor voltage, reactive/active power ripple, rotor/stator current, and torque ripples. Also, the DPC method with NSTSM controllers (DPC-NSTSM) is a simple algorithm compared to the vector control method. Both methods are developed and programmed in Matlab on a 1.5MW DFIG-based wind turbines. The simulation studies of the DPC technique with the NSTM algorithm have been performed, and the results of these studies are presented and discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iranian Journal of Electrical and Electronic Engineering
Iranian Journal of Electrical and Electronic Engineering Engineering-Electrical and Electronic Engineering
CiteScore
1.70
自引率
0.00%
发文量
13
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信