{"title":"基于NSTSM算法的SVPWM DFIG直接功率控制","authors":"H. Benbouhenni, Z. Boudjema, A. Belaidi","doi":"10.22068/IJEEE.17.1.1518","DOIUrl":null,"url":null,"abstract":"Abstract: The paper presents a super-twisting sliding mode (STSM) regulator with neural networks (NN) of direct power command (DPC) for controlling the active/reactive power of a doubly-fed induction generator (DFIG) using a two-level space vector pulse width modulation (2L-SVPWM). Traditional DPC strategy with proportional-integral (PI) controllers (DPC-PI) has significantly more active/reactive power ripples, electromagnetic torque ripple, and harmonic distortion (THD) of voltages. The proposed DPC strategy based on a neural super-twisting sliding mode controller (NSTSM) minimizes the THD of stator/rotor voltage, reactive/active power ripple, rotor/stator current, and torque ripples. Also, the DPC method with NSTSM controllers (DPC-NSTSM) is a simple algorithm compared to the vector control method. Both methods are developed and programmed in Matlab on a 1.5MW DFIG-based wind turbines. The simulation studies of the DPC technique with the NSTM algorithm have been performed, and the results of these studies are presented and discussed.","PeriodicalId":39055,"journal":{"name":"Iranian Journal of Electrical and Electronic Engineering","volume":"17 1","pages":"1518-1518"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Direct Power Control With NSTSM Algorithm for DFIG Using SVPWM Technique\",\"authors\":\"H. Benbouhenni, Z. Boudjema, A. Belaidi\",\"doi\":\"10.22068/IJEEE.17.1.1518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract: The paper presents a super-twisting sliding mode (STSM) regulator with neural networks (NN) of direct power command (DPC) for controlling the active/reactive power of a doubly-fed induction generator (DFIG) using a two-level space vector pulse width modulation (2L-SVPWM). Traditional DPC strategy with proportional-integral (PI) controllers (DPC-PI) has significantly more active/reactive power ripples, electromagnetic torque ripple, and harmonic distortion (THD) of voltages. The proposed DPC strategy based on a neural super-twisting sliding mode controller (NSTSM) minimizes the THD of stator/rotor voltage, reactive/active power ripple, rotor/stator current, and torque ripples. Also, the DPC method with NSTSM controllers (DPC-NSTSM) is a simple algorithm compared to the vector control method. Both methods are developed and programmed in Matlab on a 1.5MW DFIG-based wind turbines. The simulation studies of the DPC technique with the NSTM algorithm have been performed, and the results of these studies are presented and discussed.\",\"PeriodicalId\":39055,\"journal\":{\"name\":\"Iranian Journal of Electrical and Electronic Engineering\",\"volume\":\"17 1\",\"pages\":\"1518-1518\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Electrical and Electronic Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22068/IJEEE.17.1.1518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Electrical and Electronic Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22068/IJEEE.17.1.1518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
Direct Power Control With NSTSM Algorithm for DFIG Using SVPWM Technique
Abstract: The paper presents a super-twisting sliding mode (STSM) regulator with neural networks (NN) of direct power command (DPC) for controlling the active/reactive power of a doubly-fed induction generator (DFIG) using a two-level space vector pulse width modulation (2L-SVPWM). Traditional DPC strategy with proportional-integral (PI) controllers (DPC-PI) has significantly more active/reactive power ripples, electromagnetic torque ripple, and harmonic distortion (THD) of voltages. The proposed DPC strategy based on a neural super-twisting sliding mode controller (NSTSM) minimizes the THD of stator/rotor voltage, reactive/active power ripple, rotor/stator current, and torque ripples. Also, the DPC method with NSTSM controllers (DPC-NSTSM) is a simple algorithm compared to the vector control method. Both methods are developed and programmed in Matlab on a 1.5MW DFIG-based wind turbines. The simulation studies of the DPC technique with the NSTM algorithm have been performed, and the results of these studies are presented and discussed.