第三代测序质量

Q3 Chemistry
A. Elbialy, M. El-Dosuky, I. El-Henawy
{"title":"第三代测序质量","authors":"A. Elbialy, M. El-Dosuky, I. El-Henawy","doi":"10.1166/JCTN.2020.9630","DOIUrl":null,"url":null,"abstract":"Third generation sequencing (TGS) relates to long reads but with relatively high error rates. Quality of TGS is a hot topic, dealing with errors. This paper combines and investigates three quality related metrics. They are basecalling accuracy, Phred Quality Scores, and GC content.\n For basecalling accuracy, a deep neural network is adopted. The measured loss does not exceed 5.42.","PeriodicalId":15416,"journal":{"name":"Journal of Computational and Theoretical Nanoscience","volume":"17 1","pages":"5205-5209"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quality of Third Generation Sequencing\",\"authors\":\"A. Elbialy, M. El-Dosuky, I. El-Henawy\",\"doi\":\"10.1166/JCTN.2020.9630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Third generation sequencing (TGS) relates to long reads but with relatively high error rates. Quality of TGS is a hot topic, dealing with errors. This paper combines and investigates three quality related metrics. They are basecalling accuracy, Phred Quality Scores, and GC content.\\n For basecalling accuracy, a deep neural network is adopted. The measured loss does not exceed 5.42.\",\"PeriodicalId\":15416,\"journal\":{\"name\":\"Journal of Computational and Theoretical Nanoscience\",\"volume\":\"17 1\",\"pages\":\"5205-5209\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Theoretical Nanoscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/JCTN.2020.9630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Theoretical Nanoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/JCTN.2020.9630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

摘要

第三代测序(TGS)涉及长读取,但具有相对较高的错误率。TGS的质量是一个热门话题,处理错误。本文结合并研究了三个与质量相关的指标。它们是基于调用的准确性、Phred质量分数和GC内容。为了保证基调用的准确性,采用了深度神经网络。实测损失不超过5.42。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quality of Third Generation Sequencing
Third generation sequencing (TGS) relates to long reads but with relatively high error rates. Quality of TGS is a hot topic, dealing with errors. This paper combines and investigates three quality related metrics. They are basecalling accuracy, Phred Quality Scores, and GC content. For basecalling accuracy, a deep neural network is adopted. The measured loss does not exceed 5.42.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational and Theoretical Nanoscience
Journal of Computational and Theoretical Nanoscience 工程技术-材料科学:综合
自引率
0.00%
发文量
0
审稿时长
3.9 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信