复流形上k-Hessian方程的Dirichlet问题

IF 1.7 1区 数学 Q1 MATHEMATICS
Tristan C. Collins, Sebastien Picard
{"title":"复流形上k-Hessian方程的Dirichlet问题","authors":"Tristan C. Collins, Sebastien Picard","doi":"10.1353/ajm.2022.0040","DOIUrl":null,"url":null,"abstract":"abstract:We solve the Dirichlet problem for $k$-Hessian equations on compact complex manifolds with boundary, given the existence of a subsolution. Our method is based on a second order a priori estimate of the solution on the boundary with a particular gradient scale. The scale allows us to apply a blow-up argument to obtain control on all necessary norms of the solution.","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"The Dirichlet problem for the k-Hessian equation on a complex manifold\",\"authors\":\"Tristan C. Collins, Sebastien Picard\",\"doi\":\"10.1353/ajm.2022.0040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"abstract:We solve the Dirichlet problem for $k$-Hessian equations on compact complex manifolds with boundary, given the existence of a subsolution. Our method is based on a second order a priori estimate of the solution on the boundary with a particular gradient scale. The scale allows us to apply a blow-up argument to obtain control on all necessary norms of the solution.\",\"PeriodicalId\":7453,\"journal\":{\"name\":\"American Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1353/ajm.2022.0040\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1353/ajm.2022.0040","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 17

摘要

文摘:在有边界的紧致复流形上,在存在亚解的情况下,我们求解$k$-Hessian方程的Dirichlet问题。我们的方法基于对具有特定梯度尺度的边界上的解的二阶先验估计。规模允许我们应用爆破论点来控制解决方案的所有必要规范。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Dirichlet problem for the k-Hessian equation on a complex manifold
abstract:We solve the Dirichlet problem for $k$-Hessian equations on compact complex manifolds with boundary, given the existence of a subsolution. Our method is based on a second order a priori estimate of the solution on the boundary with a particular gradient scale. The scale allows us to apply a blow-up argument to obtain control on all necessary norms of the solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
35
审稿时长
24 months
期刊介绍: The oldest mathematics journal in the Western Hemisphere in continuous publication, the American Journal of Mathematics ranks as one of the most respected and celebrated journals in its field. Published since 1878, the Journal has earned its reputation by presenting pioneering mathematical papers. It does not specialize, but instead publishes articles of broad appeal covering the major areas of contemporary mathematics. The American Journal of Mathematics is used as a basic reference work in academic libraries, both in the United States and abroad.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信