与新月形域有关的解析函数某些子类的Fekete-Szeg\“{o}不等式及Poison分布级数的应用

IF 0.4 Q4 MATHEMATICS
G. Murugusundaramoorthy
{"title":"与新月形域有关的解析函数某些子类的Fekete-Szeg\\“{o}不等式及Poison分布级数的应用","authors":"G. Murugusundaramoorthy","doi":"10.30495/JME.V0I0.1697","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to define a newclass of analytic, normalizedfunctions in the open unit disk $\\Delta=\\{ z:z\\in \\mathbb{C}\\quad \\text{and}\\quad \\left\\vertz\\right\\vert <1\\}$ subordinating with crescent shaped regions, and to derive certain  coefficient estimates $a_2$ , $a_3$ and Fekete-Szeg\\\"{o} inequality for $f\\in\\mathscr{M}_q(\\alpha,\\beta,\\lambda)$. A similar result have been  done for the function $ f^{-1}. $ Further application of our results to certain functions defined by convolution products with a normalizedanalytic function is given,  in particular we obtainFekete-Szeg\\\"{o} inequalities for certainsubclasses of functions defined through Poisson distribution series.","PeriodicalId":43745,"journal":{"name":"Journal of Mathematical Extension","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fekete-Szeg\\\\\\\"{o} inequality for certain Subclasses of analytic functions related with Crescent-Shaped domain and application of Poison distribution series\",\"authors\":\"G. Murugusundaramoorthy\",\"doi\":\"10.30495/JME.V0I0.1697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to define a newclass of analytic, normalizedfunctions in the open unit disk $\\\\Delta=\\\\{ z:z\\\\in \\\\mathbb{C}\\\\quad \\\\text{and}\\\\quad \\\\left\\\\vertz\\\\right\\\\vert <1\\\\}$ subordinating with crescent shaped regions, and to derive certain  coefficient estimates $a_2$ , $a_3$ and Fekete-Szeg\\\\\\\"{o} inequality for $f\\\\in\\\\mathscr{M}_q(\\\\alpha,\\\\beta,\\\\lambda)$. A similar result have been  done for the function $ f^{-1}. $ Further application of our results to certain functions defined by convolution products with a normalizedanalytic function is given,  in particular we obtainFekete-Szeg\\\\\\\"{o} inequalities for certainsubclasses of functions defined through Poisson distribution series.\",\"PeriodicalId\":43745,\"journal\":{\"name\":\"Journal of Mathematical Extension\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Extension\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30495/JME.V0I0.1697\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Extension","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30495/JME.V0I0.1697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是在开单位圆盘$\Delta=\{z:z\in\mathbb{C}\quad\text{and}\quad\left\vertz\right\vert<1\}$中定义一类新的解析归一化函数,并导出$f\in\math scr的某些系数估计$a_2$、$a_3$和Fekete-Szeg\“{o}不等式{M}_q(\alpha,\beta,\lambda)$。函数$f^{-1}也得到了类似的结果$将我们的结果进一步应用于由具有归一化分析函数的卷积乘积定义的某些函数,特别是我们获得了由泊松分布级数定义的函数的某些子类的Feeke-Szeg\“{o}不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fekete-Szeg\"{o} inequality for certain Subclasses of analytic functions related with Crescent-Shaped domain and application of Poison distribution series
The purpose of this paper is to define a newclass of analytic, normalizedfunctions in the open unit disk $\Delta=\{ z:z\in \mathbb{C}\quad \text{and}\quad \left\vertz\right\vert <1\}$ subordinating with crescent shaped regions, and to derive certain  coefficient estimates $a_2$ , $a_3$ and Fekete-Szeg\"{o} inequality for $f\in\mathscr{M}_q(\alpha,\beta,\lambda)$. A similar result have been  done for the function $ f^{-1}. $ Further application of our results to certain functions defined by convolution products with a normalizedanalytic function is given,  in particular we obtainFekete-Szeg\"{o} inequalities for certainsubclasses of functions defined through Poisson distribution series.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
68
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信