homh -pre- jordan代数和homj -树形代数的构造

Q3 Mathematics
T. Chtioui, S. Mabrouk, A. Makhlouf
{"title":"homh -pre- jordan代数和homj -树形代数的构造","authors":"T. Chtioui, S. Mabrouk, A. Makhlouf","doi":"10.17398/2605-5686.38.1.27","DOIUrl":null,"url":null,"abstract":"The aim of this work is to introduce and study the notions of Hom-pre-Jordan algebra and Hom-J-dendriform algebra which generalize Hom-Jordan algebras. Hom-pre-Jordan algebras are regarded as the underlying algebraic structures of the Hom-Jordan algebras behind the Rota-Baxter operators and O-operators introduced in this paper. Hom-pre-Jordan algebras are also analogues of Hom-pre-Lie algebras for Hom-Jordan algebras. The anti-commutator of a Hom-pre-Jordan algebra is a Hom-Jordan algebra and the left multiplication operator gives a representation of a Hom-Jordan algebra. On the other hand, a Hom-J-dendriform algebra is a Hom-Jordan algebraic analogue of a Hom-dendriform algebra such that the anti-commutator of the sum of the two operations is a Hom-pre-Jordan algebra.","PeriodicalId":33668,"journal":{"name":"Extracta Mathematicae","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of Hom-pre-Jordan algebras and Hom-J-dendriform algebras\",\"authors\":\"T. Chtioui, S. Mabrouk, A. Makhlouf\",\"doi\":\"10.17398/2605-5686.38.1.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this work is to introduce and study the notions of Hom-pre-Jordan algebra and Hom-J-dendriform algebra which generalize Hom-Jordan algebras. Hom-pre-Jordan algebras are regarded as the underlying algebraic structures of the Hom-Jordan algebras behind the Rota-Baxter operators and O-operators introduced in this paper. Hom-pre-Jordan algebras are also analogues of Hom-pre-Lie algebras for Hom-Jordan algebras. The anti-commutator of a Hom-pre-Jordan algebra is a Hom-Jordan algebra and the left multiplication operator gives a representation of a Hom-Jordan algebra. On the other hand, a Hom-J-dendriform algebra is a Hom-Jordan algebraic analogue of a Hom-dendriform algebra such that the anti-commutator of the sum of the two operations is a Hom-pre-Jordan algebra.\",\"PeriodicalId\":33668,\"journal\":{\"name\":\"Extracta Mathematicae\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extracta Mathematicae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17398/2605-5686.38.1.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extracta Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17398/2605-5686.38.1.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本工作的目的是介绍和研究推广Hom-Jordan代数的Hom-pre-Jordinal代数和Hom-J德里形式代数的概念。Hom-pre-Jordan代数被认为是本文引入的Rota-Baxter算子和O-算子后面的Hom-Jordan代数的基本代数结构。Hom-pre-Jordan代数也是Hom-pre-Lee代数的类似物。Hom-pre-Jordan代数的反交换子是Hom-Jordan代数,并且左乘法算子给出了Hom-Jordan代数学的表示。另一方面,Hom-J树状代数是Hom树状代数的Hom-Jordan代数类似物,使得两个运算之和的反交换子是Hom-pre-Jardon代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of Hom-pre-Jordan algebras and Hom-J-dendriform algebras
The aim of this work is to introduce and study the notions of Hom-pre-Jordan algebra and Hom-J-dendriform algebra which generalize Hom-Jordan algebras. Hom-pre-Jordan algebras are regarded as the underlying algebraic structures of the Hom-Jordan algebras behind the Rota-Baxter operators and O-operators introduced in this paper. Hom-pre-Jordan algebras are also analogues of Hom-pre-Lie algebras for Hom-Jordan algebras. The anti-commutator of a Hom-pre-Jordan algebra is a Hom-Jordan algebra and the left multiplication operator gives a representation of a Hom-Jordan algebra. On the other hand, a Hom-J-dendriform algebra is a Hom-Jordan algebraic analogue of a Hom-dendriform algebra such that the anti-commutator of the sum of the two operations is a Hom-pre-Jordan algebra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Extracta Mathematicae
Extracta Mathematicae Mathematics-Mathematics (miscellaneous)
CiteScore
1.00
自引率
0.00%
发文量
6
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信