包含松弛Lipschitz算子的广义变分不等式的迭代算法

IF 1.1 Q3 INFORMATION SCIENCE & LIBRARY SCIENCE
Ayache Benhadid
{"title":"包含松弛Lipschitz算子的广义变分不等式的迭代算法","authors":"Ayache Benhadid","doi":"10.1080/02522667.2022.2027607","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we establish and discuss the existence of a solution of the general variational inequality : Find u ∈ H, and ω ∈ T(u) such that h(u) ∈ K and This variational inequality was studied by Verma [3] in case s ≡ 0, and g ≡ I.","PeriodicalId":46518,"journal":{"name":"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iterative algorithms for general variational inequalities involving relaxed Lipschitz operators\",\"authors\":\"Ayache Benhadid\",\"doi\":\"10.1080/02522667.2022.2027607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we establish and discuss the existence of a solution of the general variational inequality : Find u ∈ H, and ω ∈ T(u) such that h(u) ∈ K and This variational inequality was studied by Verma [3] in case s ≡ 0, and g ≡ I.\",\"PeriodicalId\":46518,\"journal\":{\"name\":\"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02522667.2022.2027607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02522667.2022.2027607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文建立并讨论了一般变分不等式的一个解的存在性:求u∈H,ω∈T(u)使得H(u)∈K,并且Verma[3]研究了这种变分不等式在s≠0和g≠I的情况下的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iterative algorithms for general variational inequalities involving relaxed Lipschitz operators
Abstract In this paper, we establish and discuss the existence of a solution of the general variational inequality : Find u ∈ H, and ω ∈ T(u) such that h(u) ∈ K and This variational inequality was studied by Verma [3] in case s ≡ 0, and g ≡ I.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES
JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES INFORMATION SCIENCE & LIBRARY SCIENCE-
自引率
21.40%
发文量
88
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信