李n -代数群的模与表示直至同伦

IF 0.5 4区 数学
M. Jotz, R. A. Mehta, T. Papantonis
{"title":"李n -代数群的模与表示直至同伦","authors":"M. Jotz,&nbsp;R. A. Mehta,&nbsp;T. Papantonis","doi":"10.1007/s40062-022-00322-x","DOIUrl":null,"url":null,"abstract":"<div><p>This paper studies differential graded modules and representations up to homotopy of Lie <i>n</i>-algebroids, for general <span>\\(n\\in {\\mathbb {N}}\\)</span>. The adjoint and coadjoint modules are described, and the corresponding split versions of the adjoint and coadjoint representations up to homotopy are explained. In particular, the case of Lie 2-algebroids is analysed in detail. The compatibility of a Poisson bracket with the homological vector field of a Lie <i>n</i>-algebroid is shown to be equivalent to a morphism from the coadjoint module to the adjoint module, leading to an alternative characterisation of non-degeneracy of higher Poisson structures. Moreover, the Weil algebra of a Lie <i>n</i>-algebroid is computed explicitly in terms of splittings, and representations up to homotopy of Lie <i>n</i>-algebroids are used to encode decomposed VB-Lie <i>n</i>-algebroid structures on double vector bundles.</p></div>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"18 1","pages":"23 - 70"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40062-022-00322-x.pdf","citationCount":"6","resultStr":"{\"title\":\"Modules and representations up to homotopy of Lie n-algebroids\",\"authors\":\"M. Jotz,&nbsp;R. A. Mehta,&nbsp;T. Papantonis\",\"doi\":\"10.1007/s40062-022-00322-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper studies differential graded modules and representations up to homotopy of Lie <i>n</i>-algebroids, for general <span>\\\\(n\\\\in {\\\\mathbb {N}}\\\\)</span>. The adjoint and coadjoint modules are described, and the corresponding split versions of the adjoint and coadjoint representations up to homotopy are explained. In particular, the case of Lie 2-algebroids is analysed in detail. The compatibility of a Poisson bracket with the homological vector field of a Lie <i>n</i>-algebroid is shown to be equivalent to a morphism from the coadjoint module to the adjoint module, leading to an alternative characterisation of non-degeneracy of higher Poisson structures. Moreover, the Weil algebra of a Lie <i>n</i>-algebroid is computed explicitly in terms of splittings, and representations up to homotopy of Lie <i>n</i>-algebroids are used to encode decomposed VB-Lie <i>n</i>-algebroid structures on double vector bundles.</p></div>\",\"PeriodicalId\":636,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":\"18 1\",\"pages\":\"23 - 70\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40062-022-00322-x.pdf\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-022-00322-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-022-00322-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文研究了李n -代数群的微分梯度模及其直至同伦的表示,对于一般的\(n\in {\mathbb {N}}\)。描述了伴随模和伴随模,并解释了直到同伦的伴随模和伴随模的对应的分裂形式。特别地,详细地分析了李2 -代数群的情况。证明了一个泊松括号与李n -代数的同调向量场的相容性等价于从伴随模到伴随模的态射,从而给出了高泊松结构的非简并性的另一种表征。此外,利用分裂显式计算了李n -代数的Weil代数,并利用李n -代数的同伦表示对双向量束上分解的vb -李n -代数结构进行了编码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modules and representations up to homotopy of Lie n-algebroids

Modules and representations up to homotopy of Lie n-algebroids

This paper studies differential graded modules and representations up to homotopy of Lie n-algebroids, for general \(n\in {\mathbb {N}}\). The adjoint and coadjoint modules are described, and the corresponding split versions of the adjoint and coadjoint representations up to homotopy are explained. In particular, the case of Lie 2-algebroids is analysed in detail. The compatibility of a Poisson bracket with the homological vector field of a Lie n-algebroid is shown to be equivalent to a morphism from the coadjoint module to the adjoint module, leading to an alternative characterisation of non-degeneracy of higher Poisson structures. Moreover, the Weil algebra of a Lie n-algebroid is computed explicitly in terms of splittings, and representations up to homotopy of Lie n-algebroids are used to encode decomposed VB-Lie n-algebroid structures on double vector bundles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Homotopy and Related Structures
Journal of Homotopy and Related Structures Mathematics-Geometry and Topology
自引率
0.00%
发文量
0
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信