关于平面仿射群子群的拟单项式

Q3 Mathematics
N. Samaruk
{"title":"关于平面仿射群子群的拟单项式","authors":"N. Samaruk","doi":"10.30970/ms.59.1.3-11","DOIUrl":null,"url":null,"abstract":"Let $H$ be a subgroup of the plane affine group ${\\rm Aff}(2)$ considered with the natural action on the vector space of two-variable polynomials. The polynomial family $\\{ B_{m,n}(x,y) \\}$ is called quasi-monomial with respect to $H$ if the group operators in two different bases $ \\{ x^m y^n \\} $ and $\\{ B_{m,n}(x,y) \\}$ have \\textit{identical} matrices. We obtain a criterion of quasi-monomiality for the case when the group $H$ is generated by rotations and translations in terms of exponential generating function for the polynomial family $\\{ B_{m,n}(x,y) \\}$.","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasi-monomials with respect to subgroups of the plane affine group\",\"authors\":\"N. Samaruk\",\"doi\":\"10.30970/ms.59.1.3-11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $H$ be a subgroup of the plane affine group ${\\\\rm Aff}(2)$ considered with the natural action on the vector space of two-variable polynomials. The polynomial family $\\\\{ B_{m,n}(x,y) \\\\}$ is called quasi-monomial with respect to $H$ if the group operators in two different bases $ \\\\{ x^m y^n \\\\} $ and $\\\\{ B_{m,n}(x,y) \\\\}$ have \\\\textit{identical} matrices. We obtain a criterion of quasi-monomiality for the case when the group $H$ is generated by rotations and translations in terms of exponential generating function for the polynomial family $\\\\{ B_{m,n}(x,y) \\\\}$.\",\"PeriodicalId\":37555,\"journal\":{\"name\":\"Matematychni Studii\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematychni Studii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30970/ms.59.1.3-11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.59.1.3-11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

设$H$是平面仿射群${\rm-Aff}(2)$的一个子群,在二元多项式的向量空间上考虑自然作用。如果两个不同基$\{x^my^n\}$和$\{B_{m,n}(x,y)\}$中的群算子具有相同的矩阵,则多项式族$\{B_{m,n}(x,y)\}$相对于$H$被称为拟单项式。对于多项式族$\{B_{m,n}(x,y)\}$,我们得到了群$H$由指数生成函数的旋转和平移生成的情况下的拟单性准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasi-monomials with respect to subgroups of the plane affine group
Let $H$ be a subgroup of the plane affine group ${\rm Aff}(2)$ considered with the natural action on the vector space of two-variable polynomials. The polynomial family $\{ B_{m,n}(x,y) \}$ is called quasi-monomial with respect to $H$ if the group operators in two different bases $ \{ x^m y^n \} $ and $\{ B_{m,n}(x,y) \}$ have \textit{identical} matrices. We obtain a criterion of quasi-monomiality for the case when the group $H$ is generated by rotations and translations in terms of exponential generating function for the polynomial family $\{ B_{m,n}(x,y) \}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matematychni Studii
Matematychni Studii Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
38
期刊介绍: Journal is devoted to research in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信