Ahmad Yani, Sherzod Abdullaev, Muataz S. Alhassan, Ramaswamy Sivaraman, Abduladheem Turki Jalil
{"title":"基于复频率法的圆形微孔板热弹性耗散非傅立叶耦合应力模型","authors":"Ahmad Yani, Sherzod Abdullaev, Muataz S. Alhassan, Ramaswamy Sivaraman, Abduladheem Turki Jalil","doi":"10.1007/s10999-022-09633-6","DOIUrl":null,"url":null,"abstract":"<div><p>This research tries to render an unconventional model for thermoelastic dissipation or thermoelastic damping (TED) in circular microplates by accommodating small-scale effect into both structure and heat transfer fields. To accomplish this purpose, the modified couple stress theory (MCST) and Guyer−Krumhansl (GK) heat conduction model are utilized for providing the coupled thermoelastic equations of motion and heat conduction. The equation of heat conduction is then solved to acquire the closed-form of temperature profile in the circular microplate. By placing the extracted temperature profile in the equation of motion, the size-dependent frequency equation influenced by thermoelastic coupling is established. By conducting some mathematical manipulations, the real and imaginary parts of damped frequency are obtained. In the next stage, with the help of the description of TED based upon the complex frequency (CF) approach, an explicit single-term relation consisting of structural and thermal scale parameters is derived for making a size-dependent estimation of TED value in circular microplates. For evaluating the precision and veracity of the proposed model, the results obtained through the presented solution are compared with the ones available from the literature. In addition, by way of several examples, the pivotal role of length scale parameter of MCST and thermal nonlocal parameter of GK model in the magnitude of TED is assessed. Various numerical results are also given to place emphasis on the impact of some parameters such as boundary conditions, geometrical features, material and ambient temperature on TED value. The formulation and results provided in this study can be used as a benchmark for optimal design of microelectromechanical systems (MEMS).</p></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"19 3","pages":"645 - 668"},"PeriodicalIF":2.7000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A non-Fourier and couple stress-based model for thermoelastic dissipation in circular microplates according to complex frequency approach\",\"authors\":\"Ahmad Yani, Sherzod Abdullaev, Muataz S. Alhassan, Ramaswamy Sivaraman, Abduladheem Turki Jalil\",\"doi\":\"10.1007/s10999-022-09633-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research tries to render an unconventional model for thermoelastic dissipation or thermoelastic damping (TED) in circular microplates by accommodating small-scale effect into both structure and heat transfer fields. To accomplish this purpose, the modified couple stress theory (MCST) and Guyer−Krumhansl (GK) heat conduction model are utilized for providing the coupled thermoelastic equations of motion and heat conduction. The equation of heat conduction is then solved to acquire the closed-form of temperature profile in the circular microplate. By placing the extracted temperature profile in the equation of motion, the size-dependent frequency equation influenced by thermoelastic coupling is established. By conducting some mathematical manipulations, the real and imaginary parts of damped frequency are obtained. In the next stage, with the help of the description of TED based upon the complex frequency (CF) approach, an explicit single-term relation consisting of structural and thermal scale parameters is derived for making a size-dependent estimation of TED value in circular microplates. For evaluating the precision and veracity of the proposed model, the results obtained through the presented solution are compared with the ones available from the literature. In addition, by way of several examples, the pivotal role of length scale parameter of MCST and thermal nonlocal parameter of GK model in the magnitude of TED is assessed. Various numerical results are also given to place emphasis on the impact of some parameters such as boundary conditions, geometrical features, material and ambient temperature on TED value. The formulation and results provided in this study can be used as a benchmark for optimal design of microelectromechanical systems (MEMS).</p></div>\",\"PeriodicalId\":593,\"journal\":{\"name\":\"International Journal of Mechanics and Materials in Design\",\"volume\":\"19 3\",\"pages\":\"645 - 668\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanics and Materials in Design\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10999-022-09633-6\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Materials in Design","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10999-022-09633-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A non-Fourier and couple stress-based model for thermoelastic dissipation in circular microplates according to complex frequency approach
This research tries to render an unconventional model for thermoelastic dissipation or thermoelastic damping (TED) in circular microplates by accommodating small-scale effect into both structure and heat transfer fields. To accomplish this purpose, the modified couple stress theory (MCST) and Guyer−Krumhansl (GK) heat conduction model are utilized for providing the coupled thermoelastic equations of motion and heat conduction. The equation of heat conduction is then solved to acquire the closed-form of temperature profile in the circular microplate. By placing the extracted temperature profile in the equation of motion, the size-dependent frequency equation influenced by thermoelastic coupling is established. By conducting some mathematical manipulations, the real and imaginary parts of damped frequency are obtained. In the next stage, with the help of the description of TED based upon the complex frequency (CF) approach, an explicit single-term relation consisting of structural and thermal scale parameters is derived for making a size-dependent estimation of TED value in circular microplates. For evaluating the precision and veracity of the proposed model, the results obtained through the presented solution are compared with the ones available from the literature. In addition, by way of several examples, the pivotal role of length scale parameter of MCST and thermal nonlocal parameter of GK model in the magnitude of TED is assessed. Various numerical results are also given to place emphasis on the impact of some parameters such as boundary conditions, geometrical features, material and ambient temperature on TED value. The formulation and results provided in this study can be used as a benchmark for optimal design of microelectromechanical systems (MEMS).
期刊介绍:
It is the objective of this journal to provide an effective medium for the dissemination of recent advances and original works in mechanics and materials'' engineering and their impact on the design process in an integrated, highly focused and coherent format. The goal is to enable mechanical, aeronautical, civil, automotive, biomedical, chemical and nuclear engineers, researchers and scientists to keep abreast of recent developments and exchange ideas on a number of topics relating to the use of mechanics and materials in design.
Analytical synopsis of contents:
The following non-exhaustive list is considered to be within the scope of the International Journal of Mechanics and Materials in Design:
Intelligent Design:
Nano-engineering and Nano-science in Design;
Smart Materials and Adaptive Structures in Design;
Mechanism(s) Design;
Design against Failure;
Design for Manufacturing;
Design of Ultralight Structures;
Design for a Clean Environment;
Impact and Crashworthiness;
Microelectronic Packaging Systems.
Advanced Materials in Design:
Newly Engineered Materials;
Smart Materials and Adaptive Structures;
Micromechanical Modelling of Composites;
Damage Characterisation of Advanced/Traditional Materials;
Alternative Use of Traditional Materials in Design;
Functionally Graded Materials;
Failure Analysis: Fatigue and Fracture;
Multiscale Modelling Concepts and Methodology;
Interfaces, interfacial properties and characterisation.
Design Analysis and Optimisation:
Shape and Topology Optimisation;
Structural Optimisation;
Optimisation Algorithms in Design;
Nonlinear Mechanics in Design;
Novel Numerical Tools in Design;
Geometric Modelling and CAD Tools in Design;
FEM, BEM and Hybrid Methods;
Integrated Computer Aided Design;
Computational Failure Analysis;
Coupled Thermo-Electro-Mechanical Designs.