{"title":"Hilbert空间算子元组的球面Aluthge变换的联合数值半径","authors":"Kais Feki, Takeaki Yamazaki","doi":"10.7153/MIA-2021-24-28","DOIUrl":null,"url":null,"abstract":"Let $\\mathbf{T}=(T_1,\\ldots,T_d)$ be a $d$-tuple of operators on a complex Hilbert space $\\mathcal{H}$. The spherical Aluthge transform of $\\mathbf{T}$ is the $d$-tuple given by $\\widehat{\\mathbf{T}}:=(\\sqrt{P}V_1\\sqrt{P},\\ldots,\\sqrt{P}V_d\\sqrt{P})$ where $P:=\\sqrt{T_1^*T_1+\\ldots+T_d^*T_d}$ and $(V_1,\\ldots,V_d)$ is a joint partial isometry such that $T_k=V_k P$ for all $1 \\le k \\le d$. In this paper, we prove several inequalities involving the joint numerical radius and the joint operator norm of $\\widehat{\\mathbf{T}}$. Moreover, a characterization of the joint spectral radius of an operator tuple $\\mathbf{T}$ via $n$-th iterated of spherical Aluthge transform is established.","PeriodicalId":49868,"journal":{"name":"Mathematical Inequalities & Applications","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Joint numerical radius of spherical Aluthge transforms of tuples of Hilbert space operators\",\"authors\":\"Kais Feki, Takeaki Yamazaki\",\"doi\":\"10.7153/MIA-2021-24-28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathbf{T}=(T_1,\\\\ldots,T_d)$ be a $d$-tuple of operators on a complex Hilbert space $\\\\mathcal{H}$. The spherical Aluthge transform of $\\\\mathbf{T}$ is the $d$-tuple given by $\\\\widehat{\\\\mathbf{T}}:=(\\\\sqrt{P}V_1\\\\sqrt{P},\\\\ldots,\\\\sqrt{P}V_d\\\\sqrt{P})$ where $P:=\\\\sqrt{T_1^*T_1+\\\\ldots+T_d^*T_d}$ and $(V_1,\\\\ldots,V_d)$ is a joint partial isometry such that $T_k=V_k P$ for all $1 \\\\le k \\\\le d$. In this paper, we prove several inequalities involving the joint numerical radius and the joint operator norm of $\\\\widehat{\\\\mathbf{T}}$. Moreover, a characterization of the joint spectral radius of an operator tuple $\\\\mathbf{T}$ via $n$-th iterated of spherical Aluthge transform is established.\",\"PeriodicalId\":49868,\"journal\":{\"name\":\"Mathematical Inequalities & Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Inequalities & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7153/MIA-2021-24-28\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Inequalities & Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7153/MIA-2021-24-28","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11
摘要
设$\mathbf{T}=(T_1,\ldots,T_d)$是复希尔伯特空间$\mathcal{H}$上的一个$d$ -元算子。$\mathbf{T}$的球面Aluthge变换是$\widehat{\mathbf{T}}:=(\sqrt{P}V_1\sqrt{P},\ldots,\sqrt{P}V_d\sqrt{P})$给出的$d$ -元组,其中$P:=\sqrt{T_1^*T_1+\ldots+T_d^*T_d}$和$(V_1,\ldots,V_d)$是一个联合的部分等距,使得$T_k=V_k P$适用于所有$1 \le k \le d$。本文证明了$\widehat{\mathbf{T}}$的联合数值半径和联合算子范数的几个不等式。通过球面Aluthge变换的$n$次迭代,建立了算子元组$\mathbf{T}$的联合谱半径的表征。
Joint numerical radius of spherical Aluthge transforms of tuples of Hilbert space operators
Let $\mathbf{T}=(T_1,\ldots,T_d)$ be a $d$-tuple of operators on a complex Hilbert space $\mathcal{H}$. The spherical Aluthge transform of $\mathbf{T}$ is the $d$-tuple given by $\widehat{\mathbf{T}}:=(\sqrt{P}V_1\sqrt{P},\ldots,\sqrt{P}V_d\sqrt{P})$ where $P:=\sqrt{T_1^*T_1+\ldots+T_d^*T_d}$ and $(V_1,\ldots,V_d)$ is a joint partial isometry such that $T_k=V_k P$ for all $1 \le k \le d$. In this paper, we prove several inequalities involving the joint numerical radius and the joint operator norm of $\widehat{\mathbf{T}}$. Moreover, a characterization of the joint spectral radius of an operator tuple $\mathbf{T}$ via $n$-th iterated of spherical Aluthge transform is established.
期刊介绍:
''Mathematical Inequalities & Applications'' (''MIA'') brings together original research papers in all areas of mathematics, provided they are concerned with inequalities or their role. From time to time ''MIA'' will publish invited survey articles. Short notes with interesting results or open problems will also be accepted. ''MIA'' is published quarterly, in January, April, July, and October.