Hilbert空间算子元组的球面Aluthge变换的联合数值半径

IF 0.9 4区 数学 Q2 MATHEMATICS
Kais Feki, Takeaki Yamazaki
{"title":"Hilbert空间算子元组的球面Aluthge变换的联合数值半径","authors":"Kais Feki, Takeaki Yamazaki","doi":"10.7153/MIA-2021-24-28","DOIUrl":null,"url":null,"abstract":"Let $\\mathbf{T}=(T_1,\\ldots,T_d)$ be a $d$-tuple of operators on a complex Hilbert space $\\mathcal{H}$. The spherical Aluthge transform of $\\mathbf{T}$ is the $d$-tuple given by $\\widehat{\\mathbf{T}}:=(\\sqrt{P}V_1\\sqrt{P},\\ldots,\\sqrt{P}V_d\\sqrt{P})$ where $P:=\\sqrt{T_1^*T_1+\\ldots+T_d^*T_d}$ and $(V_1,\\ldots,V_d)$ is a joint partial isometry such that $T_k=V_k P$ for all $1 \\le k \\le d$. In this paper, we prove several inequalities involving the joint numerical radius and the joint operator norm of $\\widehat{\\mathbf{T}}$. Moreover, a characterization of the joint spectral radius of an operator tuple $\\mathbf{T}$ via $n$-th iterated of spherical Aluthge transform is established.","PeriodicalId":49868,"journal":{"name":"Mathematical Inequalities & Applications","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Joint numerical radius of spherical Aluthge transforms of tuples of Hilbert space operators\",\"authors\":\"Kais Feki, Takeaki Yamazaki\",\"doi\":\"10.7153/MIA-2021-24-28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathbf{T}=(T_1,\\\\ldots,T_d)$ be a $d$-tuple of operators on a complex Hilbert space $\\\\mathcal{H}$. The spherical Aluthge transform of $\\\\mathbf{T}$ is the $d$-tuple given by $\\\\widehat{\\\\mathbf{T}}:=(\\\\sqrt{P}V_1\\\\sqrt{P},\\\\ldots,\\\\sqrt{P}V_d\\\\sqrt{P})$ where $P:=\\\\sqrt{T_1^*T_1+\\\\ldots+T_d^*T_d}$ and $(V_1,\\\\ldots,V_d)$ is a joint partial isometry such that $T_k=V_k P$ for all $1 \\\\le k \\\\le d$. In this paper, we prove several inequalities involving the joint numerical radius and the joint operator norm of $\\\\widehat{\\\\mathbf{T}}$. Moreover, a characterization of the joint spectral radius of an operator tuple $\\\\mathbf{T}$ via $n$-th iterated of spherical Aluthge transform is established.\",\"PeriodicalId\":49868,\"journal\":{\"name\":\"Mathematical Inequalities & Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Inequalities & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7153/MIA-2021-24-28\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Inequalities & Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7153/MIA-2021-24-28","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

摘要

设$\mathbf{T}=(T_1,\ldots,T_d)$是复希尔伯特空间$\mathcal{H}$上的一个$d$ -元算子。$\mathbf{T}$的球面Aluthge变换是$\widehat{\mathbf{T}}:=(\sqrt{P}V_1\sqrt{P},\ldots,\sqrt{P}V_d\sqrt{P})$给出的$d$ -元组,其中$P:=\sqrt{T_1^*T_1+\ldots+T_d^*T_d}$和$(V_1,\ldots,V_d)$是一个联合的部分等距,使得$T_k=V_k P$适用于所有$1 \le k \le d$。本文证明了$\widehat{\mathbf{T}}$的联合数值半径和联合算子范数的几个不等式。通过球面Aluthge变换的$n$次迭代,建立了算子元组$\mathbf{T}$的联合谱半径的表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint numerical radius of spherical Aluthge transforms of tuples of Hilbert space operators
Let $\mathbf{T}=(T_1,\ldots,T_d)$ be a $d$-tuple of operators on a complex Hilbert space $\mathcal{H}$. The spherical Aluthge transform of $\mathbf{T}$ is the $d$-tuple given by $\widehat{\mathbf{T}}:=(\sqrt{P}V_1\sqrt{P},\ldots,\sqrt{P}V_d\sqrt{P})$ where $P:=\sqrt{T_1^*T_1+\ldots+T_d^*T_d}$ and $(V_1,\ldots,V_d)$ is a joint partial isometry such that $T_k=V_k P$ for all $1 \le k \le d$. In this paper, we prove several inequalities involving the joint numerical radius and the joint operator norm of $\widehat{\mathbf{T}}$. Moreover, a characterization of the joint spectral radius of an operator tuple $\mathbf{T}$ via $n$-th iterated of spherical Aluthge transform is established.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
10.00%
发文量
59
审稿时长
6-12 weeks
期刊介绍: ''Mathematical Inequalities & Applications'' (''MIA'') brings together original research papers in all areas of mathematics, provided they are concerned with inequalities or their role. From time to time ''MIA'' will publish invited survey articles. Short notes with interesting results or open problems will also be accepted. ''MIA'' is published quarterly, in January, April, July, and October.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信