一种基于嵌入的文本分类方法用于理解微观地理住房动态

IF 4.3 1区 地球科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
I. Nilsson, E. Delmelle
{"title":"一种基于嵌入的文本分类方法用于理解微观地理住房动态","authors":"I. Nilsson, E. Delmelle","doi":"10.1080/13658816.2023.2209803","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we introduce an approach for studying micro-geographic housing dynamics using an embedding-based, semi-supervised text classification approach on longitudinal, point-level property listing data. Based on the text used to describe properties for sale and a set of predefined classes and keywords, listings are classified according to their lifecycle of investment or disinvestment. The mixture of property types within 1 × 1 mile grid cells are then calculated and used as input in a clustering algorithm to develop a place-based classification that enables us to examine patterns of change over time. In a case study on Mecklenburg County, North Carolina using 158,253 real estate listings between 2001 and 2020, we demonstrate how this approach has the potential to further our understanding of housing and neighborhood dynamics by grounding our analysis in theoretical concepts around the housing lifecycle and its relationship to neighborhood change.","PeriodicalId":14162,"journal":{"name":"International Journal of Geographical Information Science","volume":"1 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An embedding-based text classification approach for understanding micro-geographic housing dynamics\",\"authors\":\"I. Nilsson, E. Delmelle\",\"doi\":\"10.1080/13658816.2023.2209803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we introduce an approach for studying micro-geographic housing dynamics using an embedding-based, semi-supervised text classification approach on longitudinal, point-level property listing data. Based on the text used to describe properties for sale and a set of predefined classes and keywords, listings are classified according to their lifecycle of investment or disinvestment. The mixture of property types within 1 × 1 mile grid cells are then calculated and used as input in a clustering algorithm to develop a place-based classification that enables us to examine patterns of change over time. In a case study on Mecklenburg County, North Carolina using 158,253 real estate listings between 2001 and 2020, we demonstrate how this approach has the potential to further our understanding of housing and neighborhood dynamics by grounding our analysis in theoretical concepts around the housing lifecycle and its relationship to neighborhood change.\",\"PeriodicalId\":14162,\"journal\":{\"name\":\"International Journal of Geographical Information Science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Geographical Information Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/13658816.2023.2209803\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geographical Information Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/13658816.2023.2209803","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
An embedding-based text classification approach for understanding micro-geographic housing dynamics
Abstract In this article, we introduce an approach for studying micro-geographic housing dynamics using an embedding-based, semi-supervised text classification approach on longitudinal, point-level property listing data. Based on the text used to describe properties for sale and a set of predefined classes and keywords, listings are classified according to their lifecycle of investment or disinvestment. The mixture of property types within 1 × 1 mile grid cells are then calculated and used as input in a clustering algorithm to develop a place-based classification that enables us to examine patterns of change over time. In a case study on Mecklenburg County, North Carolina using 158,253 real estate listings between 2001 and 2020, we demonstrate how this approach has the potential to further our understanding of housing and neighborhood dynamics by grounding our analysis in theoretical concepts around the housing lifecycle and its relationship to neighborhood change.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.00
自引率
7.00%
发文量
81
审稿时长
9 months
期刊介绍: International Journal of Geographical Information Science provides a forum for the exchange of original ideas, approaches, methods and experiences in the rapidly growing field of geographical information science (GIScience). It is intended to interest those who research fundamental and computational issues of geographic information, as well as issues related to the design, implementation and use of geographical information for monitoring, prediction and decision making. Published research covers innovations in GIScience and novel applications of GIScience in natural resources, social systems and the built environment, as well as relevant developments in computer science, cartography, surveying, geography and engineering in both developed and developing countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信