Rcd(K,∞)-空间上谱隙的刚性

IF 1.7 1区 数学 Q1 MATHEMATICS
N. Gigli, C. Ketterer, Kazumasa Kuwada, Shin-ichi Ohta
{"title":"Rcd(K,∞)-空间上谱隙的刚性","authors":"N. Gigli, C. Ketterer, Kazumasa Kuwada, Shin-ichi Ohta","doi":"10.1353/ajm.2020.0039","DOIUrl":null,"url":null,"abstract":"Abstract:We consider a rigidity problem for the spectral gap of the Laplacian on an ${\\rm RCD}(K,\\infty)$-space (a metric measure space satisfying the Riemannian curvature-dimension condition) for positive $K$. For a weighted Riemannian manifold, Cheng-Zhou showed that the sharp spectral gap is achieved only when a $1$-dimensional Gaussian space is split off. This can be regarded as an infinite-dimensional counterpart to Obata's rigidity theorem. Generalizing to ${\\rm RCD}(K,\\infty)$-spaces is not straightforward due to the lack of smooth structure and doubling condition. We employ the lift of an eigenfunction to the Wasserstein space and the theory of regular Lagrangian flows recently developed by Ambrosio-Trevisan to overcome this difficulty.","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2020-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1353/ajm.2020.0039","citationCount":"22","resultStr":"{\"title\":\"Rigidity for the spectral gap on Rcd(K, ∞)-spaces\",\"authors\":\"N. Gigli, C. Ketterer, Kazumasa Kuwada, Shin-ichi Ohta\",\"doi\":\"10.1353/ajm.2020.0039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract:We consider a rigidity problem for the spectral gap of the Laplacian on an ${\\\\rm RCD}(K,\\\\infty)$-space (a metric measure space satisfying the Riemannian curvature-dimension condition) for positive $K$. For a weighted Riemannian manifold, Cheng-Zhou showed that the sharp spectral gap is achieved only when a $1$-dimensional Gaussian space is split off. This can be regarded as an infinite-dimensional counterpart to Obata's rigidity theorem. Generalizing to ${\\\\rm RCD}(K,\\\\infty)$-spaces is not straightforward due to the lack of smooth structure and doubling condition. We employ the lift of an eigenfunction to the Wasserstein space and the theory of regular Lagrangian flows recently developed by Ambrosio-Trevisan to overcome this difficulty.\",\"PeriodicalId\":7453,\"journal\":{\"name\":\"American Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2020-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1353/ajm.2020.0039\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1353/ajm.2020.0039\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1353/ajm.2020.0039","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 22

摘要

摘要:我们考虑了正$K$的${\rmRCD}(K,\infty)$-空间(满足黎曼曲率维数条件的度量测度空间)上拉普拉斯算子的谱间隙的刚度问题。对于一个加权黎曼流形,程周证明了只有当一个$1$-维的高斯空间被拆分时,才能获得尖锐的谱间隙,这可以看作是Obata刚性定理的无穷维对应。由于缺乏光滑结构和加倍条件,推广到${\rmRCD}(K,\infty)$空间并不简单。我们使用本征函数到Wasserstein空间的提升和Ambrosio Trevisan最近开发的正则拉格朗日流理论来克服这一困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rigidity for the spectral gap on Rcd(K, ∞)-spaces
Abstract:We consider a rigidity problem for the spectral gap of the Laplacian on an ${\rm RCD}(K,\infty)$-space (a metric measure space satisfying the Riemannian curvature-dimension condition) for positive $K$. For a weighted Riemannian manifold, Cheng-Zhou showed that the sharp spectral gap is achieved only when a $1$-dimensional Gaussian space is split off. This can be regarded as an infinite-dimensional counterpart to Obata's rigidity theorem. Generalizing to ${\rm RCD}(K,\infty)$-spaces is not straightforward due to the lack of smooth structure and doubling condition. We employ the lift of an eigenfunction to the Wasserstein space and the theory of regular Lagrangian flows recently developed by Ambrosio-Trevisan to overcome this difficulty.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
35
审稿时长
24 months
期刊介绍: The oldest mathematics journal in the Western Hemisphere in continuous publication, the American Journal of Mathematics ranks as one of the most respected and celebrated journals in its field. Published since 1878, the Journal has earned its reputation by presenting pioneering mathematical papers. It does not specialize, but instead publishes articles of broad appeal covering the major areas of contemporary mathematics. The American Journal of Mathematics is used as a basic reference work in academic libraries, both in the United States and abroad.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信