J. Bair, Piotr Błaszczyk, R. Ely, M. Katz, Karl Kuhlemann
{"title":"Leibnizian无穷小微积分的过程:在三个现代框架中的解释","authors":"J. Bair, Piotr Błaszczyk, R. Ely, M. Katz, Karl Kuhlemann","doi":"10.1080/26375451.2020.1851120","DOIUrl":null,"url":null,"abstract":"Recent Leibniz scholarship has sought to gauge which foundational framework provides the most successful account of the procedures of the Leibnizian calculus (LC). While many scholars (e.g. Ishiguro, Levey) opt for a default Weierstrassian framework, Arthur compares LC to a non-Archimedean framework SIA (Smooth Infinitesimal Analysis) of Lawvere–Kock–Bell. We analyze Arthur's comparison and find it rife with equivocations and misunderstandings on issues including the non-punctiform nature of the continuum, infinite-sided polygons, and the fictionality of infinitesimals. Rabouin and Arthur claim that Leibniz considers infinities as contradictory, and that Leibniz' definition of incomparables should be understood as nominal rather than as semantic. However, such claims hinge upon a conflation of Leibnizian notions of bounded infinity and unbounded infinity, a distinction emphasized by early Knobloch. The most faithful account of LC is arguably provided by Robinson's framework for infinitesimal analysis. We exploit an axiomatic framework for infinitesimal analysis SPOT to formalize LC.","PeriodicalId":36683,"journal":{"name":"British Journal for the History of Mathematics","volume":"36 1","pages":"170 - 209"},"PeriodicalIF":0.6000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/26375451.2020.1851120","citationCount":"11","resultStr":"{\"title\":\"Procedures of Leibnizian infinitesimal calculus: an account in three modern frameworks\",\"authors\":\"J. Bair, Piotr Błaszczyk, R. Ely, M. Katz, Karl Kuhlemann\",\"doi\":\"10.1080/26375451.2020.1851120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent Leibniz scholarship has sought to gauge which foundational framework provides the most successful account of the procedures of the Leibnizian calculus (LC). While many scholars (e.g. Ishiguro, Levey) opt for a default Weierstrassian framework, Arthur compares LC to a non-Archimedean framework SIA (Smooth Infinitesimal Analysis) of Lawvere–Kock–Bell. We analyze Arthur's comparison and find it rife with equivocations and misunderstandings on issues including the non-punctiform nature of the continuum, infinite-sided polygons, and the fictionality of infinitesimals. Rabouin and Arthur claim that Leibniz considers infinities as contradictory, and that Leibniz' definition of incomparables should be understood as nominal rather than as semantic. However, such claims hinge upon a conflation of Leibnizian notions of bounded infinity and unbounded infinity, a distinction emphasized by early Knobloch. The most faithful account of LC is arguably provided by Robinson's framework for infinitesimal analysis. We exploit an axiomatic framework for infinitesimal analysis SPOT to formalize LC.\",\"PeriodicalId\":36683,\"journal\":{\"name\":\"British Journal for the History of Mathematics\",\"volume\":\"36 1\",\"pages\":\"170 - 209\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/26375451.2020.1851120\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Journal for the History of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/26375451.2020.1851120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal for the History of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/26375451.2020.1851120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Procedures of Leibnizian infinitesimal calculus: an account in three modern frameworks
Recent Leibniz scholarship has sought to gauge which foundational framework provides the most successful account of the procedures of the Leibnizian calculus (LC). While many scholars (e.g. Ishiguro, Levey) opt for a default Weierstrassian framework, Arthur compares LC to a non-Archimedean framework SIA (Smooth Infinitesimal Analysis) of Lawvere–Kock–Bell. We analyze Arthur's comparison and find it rife with equivocations and misunderstandings on issues including the non-punctiform nature of the continuum, infinite-sided polygons, and the fictionality of infinitesimals. Rabouin and Arthur claim that Leibniz considers infinities as contradictory, and that Leibniz' definition of incomparables should be understood as nominal rather than as semantic. However, such claims hinge upon a conflation of Leibnizian notions of bounded infinity and unbounded infinity, a distinction emphasized by early Knobloch. The most faithful account of LC is arguably provided by Robinson's framework for infinitesimal analysis. We exploit an axiomatic framework for infinitesimal analysis SPOT to formalize LC.