{"title":"使用GNSS模块测量软件定义无线电中的信号延迟","authors":"Oskar Mężyk, M. Doligalski, R. Rybski","doi":"10.1515/aon-2019-0010","DOIUrl":null,"url":null,"abstract":"Abstract In the work a method of latency measurement in software defined radio (SDR) is proposed and validated. The test setup uses customer grade GNSS modules as reference time sources and enables relative delay calculation between signals received directly and those bypassed through SDR platform. The method is hardware agnostic in a sense, that it does not involve any custom software or hardware modifications. Tests that compare reported carrier-to-noise ratio and positioning errors were performed to prove functionality of such system. Additionally, authors measured several gnuradio blocks with respect to their impact on total latency introduced into signal path. All tests were performed on a bladeRF low-cost RF front-end. Minimum observed latency for the signal was below 10 ms.","PeriodicalId":30601,"journal":{"name":"Annual of Navigation","volume":"26 1","pages":"105 - 98"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Measurements of Signal Delays in Software Defined Radio with Use of GNSS Modules\",\"authors\":\"Oskar Mężyk, M. Doligalski, R. Rybski\",\"doi\":\"10.1515/aon-2019-0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the work a method of latency measurement in software defined radio (SDR) is proposed and validated. The test setup uses customer grade GNSS modules as reference time sources and enables relative delay calculation between signals received directly and those bypassed through SDR platform. The method is hardware agnostic in a sense, that it does not involve any custom software or hardware modifications. Tests that compare reported carrier-to-noise ratio and positioning errors were performed to prove functionality of such system. Additionally, authors measured several gnuradio blocks with respect to their impact on total latency introduced into signal path. All tests were performed on a bladeRF low-cost RF front-end. Minimum observed latency for the signal was below 10 ms.\",\"PeriodicalId\":30601,\"journal\":{\"name\":\"Annual of Navigation\",\"volume\":\"26 1\",\"pages\":\"105 - 98\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual of Navigation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/aon-2019-0010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual of Navigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/aon-2019-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Measurements of Signal Delays in Software Defined Radio with Use of GNSS Modules
Abstract In the work a method of latency measurement in software defined radio (SDR) is proposed and validated. The test setup uses customer grade GNSS modules as reference time sources and enables relative delay calculation between signals received directly and those bypassed through SDR platform. The method is hardware agnostic in a sense, that it does not involve any custom software or hardware modifications. Tests that compare reported carrier-to-noise ratio and positioning errors were performed to prove functionality of such system. Additionally, authors measured several gnuradio blocks with respect to their impact on total latency introduced into signal path. All tests were performed on a bladeRF low-cost RF front-end. Minimum observed latency for the signal was below 10 ms.