$\mathbb{Q}$-Fano的分不稳定性和Vojta的主要猜想

IF 0.5 4区 数学 Q3 MATHEMATICS
Nathan Grieve
{"title":"$\\mathbb{Q}$-Fano的分不稳定性和Vojta的主要猜想","authors":"Nathan Grieve","doi":"10.4310/ajm.2020.v24.n6.a3","DOIUrl":null,"url":null,"abstract":"We study Diophantine arithmetic properties of birational divisors in conjunction with concepts that surround $\\mathrm{K}$-stability for Fano varieties. There is also an interpretation in terms of the barycentres of Newton-Okounkov bodies. Our main results show how the notion of divisorial instability, in the sense of K. Fujita, implies instances of Vojta's Main Conjecture for Fano varieties. A main tool in the proof of these results is an arithmetic form of Cartan's Second Main Theorem that has been obtained by M. Ru and P. Vojta.","PeriodicalId":55452,"journal":{"name":"Asian Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Divisorial instability and Vojta’s main conjecture for $\\\\mathbb{Q}$-Fano varieties\",\"authors\":\"Nathan Grieve\",\"doi\":\"10.4310/ajm.2020.v24.n6.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study Diophantine arithmetic properties of birational divisors in conjunction with concepts that surround $\\\\mathrm{K}$-stability for Fano varieties. There is also an interpretation in terms of the barycentres of Newton-Okounkov bodies. Our main results show how the notion of divisorial instability, in the sense of K. Fujita, implies instances of Vojta's Main Conjecture for Fano varieties. A main tool in the proof of these results is an arithmetic form of Cartan's Second Main Theorem that has been obtained by M. Ru and P. Vojta.\",\"PeriodicalId\":55452,\"journal\":{\"name\":\"Asian Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/ajm.2020.v24.n6.a3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ajm.2020.v24.n6.a3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们结合围绕Fano变种的$\mathrm{K}$稳定性的概念,研究了对偶除数的丢番图算术性质。还有一个关于牛顿-奥昆科夫天体重心的解释。我们的主要结果表明,在藤田的意义上,除法不稳定性的概念如何暗示了Vojta对Fano变种的主要猜想的实例。证明这些结果的一个主要工具是M.Ru和P.Vojta获得的Cartan第二主要定理的算术形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Divisorial instability and Vojta’s main conjecture for $\mathbb{Q}$-Fano varieties
We study Diophantine arithmetic properties of birational divisors in conjunction with concepts that surround $\mathrm{K}$-stability for Fano varieties. There is also an interpretation in terms of the barycentres of Newton-Okounkov bodies. Our main results show how the notion of divisorial instability, in the sense of K. Fujita, implies instances of Vojta's Main Conjecture for Fano varieties. A main tool in the proof of these results is an arithmetic form of Cartan's Second Main Theorem that has been obtained by M. Ru and P. Vojta.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes original research papers and survey articles on all areas of pure mathematics and theoretical applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信