{"title":"基于图神经网络和深度强化学习的柔性作业车间调度","authors":"Wen Song;Xinyang Chen;Qiqiang Li;Zhiguang Cao","doi":"10.1109/TII.2022.3189725","DOIUrl":null,"url":null,"abstract":"Recently, deep reinforcement learning (DRL) has been applied to learn priority dispatching rules (PDRs) for solving complex scheduling problems. However, the existing works face challenges in dealing with flexibility, which allows an operation to be scheduled on one out of multiple machines and is often required in practice. Such one-to-many relationship brings additional complexity in both decision making and state representation. This article considers the well-known flexible job-shop scheduling problem and addresses these issues by proposing a novel DRL method to learn high-quality PDRs end to end. The operation selection and the machine assignment are combined as a composite decision. Moreover, based on a novel heterogeneous graph representation of scheduling states, a heterogeneous-graph-neural-network-based architecture is proposed to capture complex relationships among operations and machines. Experiments show that the proposed method outperforms traditional PDRs and is computationally efficient, even on instances of larger scales and different properties unseen in training.","PeriodicalId":13301,"journal":{"name":"IEEE Transactions on Industrial Informatics","volume":"19 2","pages":"1600-1610"},"PeriodicalIF":9.9000,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Flexible Job-Shop Scheduling via Graph Neural Network and Deep Reinforcement Learning\",\"authors\":\"Wen Song;Xinyang Chen;Qiqiang Li;Zhiguang Cao\",\"doi\":\"10.1109/TII.2022.3189725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, deep reinforcement learning (DRL) has been applied to learn priority dispatching rules (PDRs) for solving complex scheduling problems. However, the existing works face challenges in dealing with flexibility, which allows an operation to be scheduled on one out of multiple machines and is often required in practice. Such one-to-many relationship brings additional complexity in both decision making and state representation. This article considers the well-known flexible job-shop scheduling problem and addresses these issues by proposing a novel DRL method to learn high-quality PDRs end to end. The operation selection and the machine assignment are combined as a composite decision. Moreover, based on a novel heterogeneous graph representation of scheduling states, a heterogeneous-graph-neural-network-based architecture is proposed to capture complex relationships among operations and machines. Experiments show that the proposed method outperforms traditional PDRs and is computationally efficient, even on instances of larger scales and different properties unseen in training.\",\"PeriodicalId\":13301,\"journal\":{\"name\":\"IEEE Transactions on Industrial Informatics\",\"volume\":\"19 2\",\"pages\":\"1600-1610\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2022-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Industrial Informatics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9826438/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Industrial Informatics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/9826438/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Flexible Job-Shop Scheduling via Graph Neural Network and Deep Reinforcement Learning
Recently, deep reinforcement learning (DRL) has been applied to learn priority dispatching rules (PDRs) for solving complex scheduling problems. However, the existing works face challenges in dealing with flexibility, which allows an operation to be scheduled on one out of multiple machines and is often required in practice. Such one-to-many relationship brings additional complexity in both decision making and state representation. This article considers the well-known flexible job-shop scheduling problem and addresses these issues by proposing a novel DRL method to learn high-quality PDRs end to end. The operation selection and the machine assignment are combined as a composite decision. Moreover, based on a novel heterogeneous graph representation of scheduling states, a heterogeneous-graph-neural-network-based architecture is proposed to capture complex relationships among operations and machines. Experiments show that the proposed method outperforms traditional PDRs and is computationally efficient, even on instances of larger scales and different properties unseen in training.
期刊介绍:
The IEEE Transactions on Industrial Informatics is a multidisciplinary journal dedicated to publishing technical papers that connect theory with practical applications of informatics in industrial settings. It focuses on the utilization of information in intelligent, distributed, and agile industrial automation and control systems. The scope includes topics such as knowledge-based and AI-enhanced automation, intelligent computer control systems, flexible and collaborative manufacturing, industrial informatics in software-defined vehicles and robotics, computer vision, industrial cyber-physical and industrial IoT systems, real-time and networked embedded systems, security in industrial processes, industrial communications, systems interoperability, and human-machine interaction.