R. Han, Zhuwen Wang, Yu-hang Guo, Xinru Wang, R. A, Gaoming Zhong
{"title":"基于级联森林数据扩充的岩性、岩相和流体类别多标签预测方法","authors":"R. Han, Zhuwen Wang, Yu-hang Guo, Xinru Wang, R. A, Gaoming Zhong","doi":"10.46690/ager.2023.07.04","DOIUrl":null,"url":null,"abstract":": Predicting the lithology, lithofacies and reservoir fluid classes of igneous rocks holds significant value in the domains of CO 2 storage and reservoir evaluation. However, no precedent exists for research on the multi-label identification of igneous rocks. This study proposes a multi-label data augmented cascade forest method for the prediction of multi-label lithology, lithofacies and fluid using 9 conventional logging data features of cores collected from the eastern depression of the Liaohe Basin in northeastern China. Data augmentation is performed on an unbalanced multi-label training set using the multi-label synthetic minority over-sampling technique. Sample training is achieved by a multi-label cascade forest consisting of predictive clustering trees. These cascade structures possess adaptive feature selection and layer growth mechanisms. Given the necessity to focus on all possible outcomes and the generalization ability of the method, a simulated well model is built and then compared with 6 typical multi-label learning methods. The outperformance of this method in the evaluation metrics validates its superiority in terms of accuracy and generalization ability. The consistency of the predicted results and geological data of actual wells verifies the reliability of our method. Furthermore, the results show that it can be used as a reliable means of multi-label prediction of igneous lithology, lithofacies and reservoir fluids.","PeriodicalId":36335,"journal":{"name":"Advances in Geo-Energy Research","volume":" ","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multi-label prediction method for lithology, lithofacies and fluid classes based on data augmentation by cascade forest\",\"authors\":\"R. Han, Zhuwen Wang, Yu-hang Guo, Xinru Wang, R. A, Gaoming Zhong\",\"doi\":\"10.46690/ager.2023.07.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Predicting the lithology, lithofacies and reservoir fluid classes of igneous rocks holds significant value in the domains of CO 2 storage and reservoir evaluation. However, no precedent exists for research on the multi-label identification of igneous rocks. This study proposes a multi-label data augmented cascade forest method for the prediction of multi-label lithology, lithofacies and fluid using 9 conventional logging data features of cores collected from the eastern depression of the Liaohe Basin in northeastern China. Data augmentation is performed on an unbalanced multi-label training set using the multi-label synthetic minority over-sampling technique. Sample training is achieved by a multi-label cascade forest consisting of predictive clustering trees. These cascade structures possess adaptive feature selection and layer growth mechanisms. Given the necessity to focus on all possible outcomes and the generalization ability of the method, a simulated well model is built and then compared with 6 typical multi-label learning methods. The outperformance of this method in the evaluation metrics validates its superiority in terms of accuracy and generalization ability. The consistency of the predicted results and geological data of actual wells verifies the reliability of our method. Furthermore, the results show that it can be used as a reliable means of multi-label prediction of igneous lithology, lithofacies and reservoir fluids.\",\"PeriodicalId\":36335,\"journal\":{\"name\":\"Advances in Geo-Energy Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2023-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Geo-Energy Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46690/ager.2023.07.04\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geo-Energy Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46690/ager.2023.07.04","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Multi-label prediction method for lithology, lithofacies and fluid classes based on data augmentation by cascade forest
: Predicting the lithology, lithofacies and reservoir fluid classes of igneous rocks holds significant value in the domains of CO 2 storage and reservoir evaluation. However, no precedent exists for research on the multi-label identification of igneous rocks. This study proposes a multi-label data augmented cascade forest method for the prediction of multi-label lithology, lithofacies and fluid using 9 conventional logging data features of cores collected from the eastern depression of the Liaohe Basin in northeastern China. Data augmentation is performed on an unbalanced multi-label training set using the multi-label synthetic minority over-sampling technique. Sample training is achieved by a multi-label cascade forest consisting of predictive clustering trees. These cascade structures possess adaptive feature selection and layer growth mechanisms. Given the necessity to focus on all possible outcomes and the generalization ability of the method, a simulated well model is built and then compared with 6 typical multi-label learning methods. The outperformance of this method in the evaluation metrics validates its superiority in terms of accuracy and generalization ability. The consistency of the predicted results and geological data of actual wells verifies the reliability of our method. Furthermore, the results show that it can be used as a reliable means of multi-label prediction of igneous lithology, lithofacies and reservoir fluids.
Advances in Geo-Energy Researchnatural geo-energy (oil, gas, coal geothermal, and gas hydrate)-Geotechnical Engineering and Engineering Geology
CiteScore
12.30
自引率
8.50%
发文量
63
审稿时长
2~3 weeks
期刊介绍:
Advances in Geo-Energy Research is an interdisciplinary and international periodical committed to fostering interaction and multidisciplinary collaboration among scientific communities worldwide, spanning both industry and academia. Our journal serves as a platform for researchers actively engaged in the diverse fields of geo-energy systems, providing an academic medium for the exchange of knowledge and ideas. Join us in advancing the frontiers of geo-energy research through collaboration and shared expertise.