含乘性噪声的有限和无限时滞随机分数阶扩散方程

IF 1.1 4区 数学 Q2 MATHEMATICS, APPLIED
N. Tuan, T. Caraballo, Tran Ngoc Thach
{"title":"含乘性噪声的有限和无限时滞随机分数阶扩散方程","authors":"N. Tuan, T. Caraballo, Tran Ngoc Thach","doi":"10.3233/asy-221811","DOIUrl":null,"url":null,"abstract":"In this work, we investigate stochastic fractional diffusion equations with Caputo–Fabrizio fractional derivatives and multiplicative noise, involving finite and infinite delays. Initially, the existence and uniqueness of mild solution in the spaces C p ( [ − a , b ] ; L q ( Ω , H ˙ r ) ) ) and C δ ( ( − ∞ , b ] ; L q ( Ω , H ˙ r ) ) ) are established. Next, besides investigating the regularity properties, we show the continuity of mild solutions with respect to the initial functions and the order of the fractional derivative for both cases of delay separately.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic fractional diffusion equations containing finite and infinite delays with multiplicative noise\",\"authors\":\"N. Tuan, T. Caraballo, Tran Ngoc Thach\",\"doi\":\"10.3233/asy-221811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we investigate stochastic fractional diffusion equations with Caputo–Fabrizio fractional derivatives and multiplicative noise, involving finite and infinite delays. Initially, the existence and uniqueness of mild solution in the spaces C p ( [ − a , b ] ; L q ( Ω , H ˙ r ) ) ) and C δ ( ( − ∞ , b ] ; L q ( Ω , H ˙ r ) ) ) are established. Next, besides investigating the regularity properties, we show the continuity of mild solutions with respect to the initial functions and the order of the fractional derivative for both cases of delay separately.\",\"PeriodicalId\":55438,\"journal\":{\"name\":\"Asymptotic Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptotic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3233/asy-221811\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-221811","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们研究了具有Caputo–Fabrizio分数导数和乘性噪声的随机分数扩散方程,涉及有限和无限时滞。首先,建立了空间Cp([-a,b];Lq(Ω,H*r))和Cδ((−∞,b],Lq(ω,H*r))中温和解的存在性和唯一性。接下来,除了研究正则性性质外,我们还分别证明了两种延迟情况下温和解相对于初始函数和分数阶导数的连续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic fractional diffusion equations containing finite and infinite delays with multiplicative noise
In this work, we investigate stochastic fractional diffusion equations with Caputo–Fabrizio fractional derivatives and multiplicative noise, involving finite and infinite delays. Initially, the existence and uniqueness of mild solution in the spaces C p ( [ − a , b ] ; L q ( Ω , H ˙ r ) ) ) and C δ ( ( − ∞ , b ] ; L q ( Ω , H ˙ r ) ) ) are established. Next, besides investigating the regularity properties, we show the continuity of mild solutions with respect to the initial functions and the order of the fractional derivative for both cases of delay separately.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asymptotic Analysis
Asymptotic Analysis 数学-应用数学
CiteScore
1.90
自引率
7.10%
发文量
91
审稿时长
6 months
期刊介绍: The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信