{"title":"基于多元函数主成分分析的澳大利亚南部冬季降水统计降尺度模型","authors":"Shuren Cao, Chunzheng Cao, Yun Li, Lianhua Zhu","doi":"10.1175/jamc-d-22-0101.1","DOIUrl":null,"url":null,"abstract":"\nWe propose a statistical downscaling model based on multi-way functional principal component analysis (FPCA) for rainfall prediction. The model mainly explains the relationship between the winter mean sea level pressure (MSLP) and rainfall in southern Australia from the perspective of functional data. Compared with the traditional approach of feature extraction based on principal component analysis, the multi-way FPCA needs not only fewer principal components to capture most variance in MSLP, bus also greatly avoid the loss of spatial information. A functional principal component (FPC) regression is further developed to simulate both current and future rainfall. The main results show that the first five leading FPCs are sufficient to capture the spatial characteristics of winter MSLP, achieving the purpose of efficient dimensionality reduction. Specifically, no more than three FPCs are required to develop the functional dowscaling models for the winter rainfall over four studied regions. The functional downscaling model provides a good skill in terms of the correlation higher than 0.7 between the predictions and observations, and the ratio of root mean square error to the climatology of winter rainfall below 20% over four regions. The developed downscaling models are further used to interpret the MSLP patterns from four CMIP5 climate models (ACCESS1.3, BCC-CSM1.1-m, CESM1-CAM5 and MPI-ESM-MR), which have been used to simulate both present-day and future climate. The resulting downscaled values based on ensemble MSLP provides (1) a closer representation of observed present-day rainfall than the raw climate model values; (2) alternative estimates of future changes in rainfall that arises from changes in MSLP.","PeriodicalId":15027,"journal":{"name":"Journal of Applied Meteorology and Climatology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A statistical downscaling model based on multi-way functional principal component analysis for southern Australia winter rainfall\",\"authors\":\"Shuren Cao, Chunzheng Cao, Yun Li, Lianhua Zhu\",\"doi\":\"10.1175/jamc-d-22-0101.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nWe propose a statistical downscaling model based on multi-way functional principal component analysis (FPCA) for rainfall prediction. The model mainly explains the relationship between the winter mean sea level pressure (MSLP) and rainfall in southern Australia from the perspective of functional data. Compared with the traditional approach of feature extraction based on principal component analysis, the multi-way FPCA needs not only fewer principal components to capture most variance in MSLP, bus also greatly avoid the loss of spatial information. A functional principal component (FPC) regression is further developed to simulate both current and future rainfall. The main results show that the first five leading FPCs are sufficient to capture the spatial characteristics of winter MSLP, achieving the purpose of efficient dimensionality reduction. Specifically, no more than three FPCs are required to develop the functional dowscaling models for the winter rainfall over four studied regions. The functional downscaling model provides a good skill in terms of the correlation higher than 0.7 between the predictions and observations, and the ratio of root mean square error to the climatology of winter rainfall below 20% over four regions. The developed downscaling models are further used to interpret the MSLP patterns from four CMIP5 climate models (ACCESS1.3, BCC-CSM1.1-m, CESM1-CAM5 and MPI-ESM-MR), which have been used to simulate both present-day and future climate. The resulting downscaled values based on ensemble MSLP provides (1) a closer representation of observed present-day rainfall than the raw climate model values; (2) alternative estimates of future changes in rainfall that arises from changes in MSLP.\",\"PeriodicalId\":15027,\"journal\":{\"name\":\"Journal of Applied Meteorology and Climatology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Meteorology and Climatology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jamc-d-22-0101.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Meteorology and Climatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jamc-d-22-0101.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
A statistical downscaling model based on multi-way functional principal component analysis for southern Australia winter rainfall
We propose a statistical downscaling model based on multi-way functional principal component analysis (FPCA) for rainfall prediction. The model mainly explains the relationship between the winter mean sea level pressure (MSLP) and rainfall in southern Australia from the perspective of functional data. Compared with the traditional approach of feature extraction based on principal component analysis, the multi-way FPCA needs not only fewer principal components to capture most variance in MSLP, bus also greatly avoid the loss of spatial information. A functional principal component (FPC) regression is further developed to simulate both current and future rainfall. The main results show that the first five leading FPCs are sufficient to capture the spatial characteristics of winter MSLP, achieving the purpose of efficient dimensionality reduction. Specifically, no more than three FPCs are required to develop the functional dowscaling models for the winter rainfall over four studied regions. The functional downscaling model provides a good skill in terms of the correlation higher than 0.7 between the predictions and observations, and the ratio of root mean square error to the climatology of winter rainfall below 20% over four regions. The developed downscaling models are further used to interpret the MSLP patterns from four CMIP5 climate models (ACCESS1.3, BCC-CSM1.1-m, CESM1-CAM5 and MPI-ESM-MR), which have been used to simulate both present-day and future climate. The resulting downscaled values based on ensemble MSLP provides (1) a closer representation of observed present-day rainfall than the raw climate model values; (2) alternative estimates of future changes in rainfall that arises from changes in MSLP.
期刊介绍:
The Journal of Applied Meteorology and Climatology (JAMC) (ISSN: 1558-8424; eISSN: 1558-8432) publishes applied research on meteorology and climatology. Examples of meteorological research include topics such as weather modification, satellite meteorology, radar meteorology, boundary layer processes, physical meteorology, air pollution meteorology (including dispersion and chemical processes), agricultural and forest meteorology, mountain meteorology, and applied meteorological numerical models. Examples of climatological research include the use of climate information in impact assessments, dynamical and statistical downscaling, seasonal climate forecast applications and verification, climate risk and vulnerability, development of climate monitoring tools, and urban and local climates.