细胞周期参与癌症治疗;WEE1激酶,作为治疗策略的潜在靶点

IF 1.5 4区 医学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Sajjad Vakili-Samiani , Omid Joodi Khanghah , Elham Gholipour , Fatemeh Najafi , Elham Zeinalzadeh , Parisa Samadi , Parisa Sarvarian , Shiva Pourvahdani , Shohre Karimi Kelaye , Michael R. Hamblin , Abbas Ali Hosseinpour Feizi
{"title":"细胞周期参与癌症治疗;WEE1激酶,作为治疗策略的潜在靶点","authors":"Sajjad Vakili-Samiani ,&nbsp;Omid Joodi Khanghah ,&nbsp;Elham Gholipour ,&nbsp;Fatemeh Najafi ,&nbsp;Elham Zeinalzadeh ,&nbsp;Parisa Samadi ,&nbsp;Parisa Sarvarian ,&nbsp;Shiva Pourvahdani ,&nbsp;Shohre Karimi Kelaye ,&nbsp;Michael R. Hamblin ,&nbsp;Abbas Ali Hosseinpour Feizi","doi":"10.1016/j.mrfmmm.2022.111776","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Mitosis is the process of cell division and is regulated by checkpoints in the cell cycle. G1-S, S, and G2-M are the three main checkpoints that prevent initiation of the next phase of the cell cycle phase until previous phase has completed. DNA damage leads to activation of the G2-M checkpoint, which can trigger a downstream </span>DNA damage response<span> (DDR) pathway to induce cell cycle arrest while the damage is repaired. If the DNA damage cannot be repaired, the replication stress response (RSR) pathway finally leads to cell death by apoptosis, in this case called </span></span>mitotic catastrophe<span>. Many cancer treatments (chemotherapy and radiotherapy) cause DNA damages based on SSBs (single strand breaks) or DSBs (double strand breaks), which cause cell death through mitotic catastrophe. However, damaged cells can activate WEE1 kinase (as a part of the DDR and RSR pathways), which prevents apoptosis and cell death by inducing cell cycle arrest at G2 phase<span><span><span>. Therefore, inhibition of WEE1 kinase could sensitize cancer cells to chemotherapeutic drugs. This review focuses on the role of WEE1 kinase (as a biological macromolecule which has a molecular mass of 96 kDa) in the cell cycle, and its interactions with other regulatory pathways. In addition, we discuss the potential of WEE1 inhibition as a new therapeutic approach in the treatment of various cancers, such as </span>melanoma, breast cancer, </span>pancreatic cancer<span>, cervical cancer, etc.</span></span></span></p></div>","PeriodicalId":49790,"journal":{"name":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","volume":"824 ","pages":"Article 111776"},"PeriodicalIF":1.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Cell cycle involvement in cancer therapy; WEE1 kinase, a potential target as therapeutic strategy\",\"authors\":\"Sajjad Vakili-Samiani ,&nbsp;Omid Joodi Khanghah ,&nbsp;Elham Gholipour ,&nbsp;Fatemeh Najafi ,&nbsp;Elham Zeinalzadeh ,&nbsp;Parisa Samadi ,&nbsp;Parisa Sarvarian ,&nbsp;Shiva Pourvahdani ,&nbsp;Shohre Karimi Kelaye ,&nbsp;Michael R. Hamblin ,&nbsp;Abbas Ali Hosseinpour Feizi\",\"doi\":\"10.1016/j.mrfmmm.2022.111776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Mitosis is the process of cell division and is regulated by checkpoints in the cell cycle. G1-S, S, and G2-M are the three main checkpoints that prevent initiation of the next phase of the cell cycle phase until previous phase has completed. DNA damage leads to activation of the G2-M checkpoint, which can trigger a downstream </span>DNA damage response<span> (DDR) pathway to induce cell cycle arrest while the damage is repaired. If the DNA damage cannot be repaired, the replication stress response (RSR) pathway finally leads to cell death by apoptosis, in this case called </span></span>mitotic catastrophe<span>. Many cancer treatments (chemotherapy and radiotherapy) cause DNA damages based on SSBs (single strand breaks) or DSBs (double strand breaks), which cause cell death through mitotic catastrophe. However, damaged cells can activate WEE1 kinase (as a part of the DDR and RSR pathways), which prevents apoptosis and cell death by inducing cell cycle arrest at G2 phase<span><span><span>. Therefore, inhibition of WEE1 kinase could sensitize cancer cells to chemotherapeutic drugs. This review focuses on the role of WEE1 kinase (as a biological macromolecule which has a molecular mass of 96 kDa) in the cell cycle, and its interactions with other regulatory pathways. In addition, we discuss the potential of WEE1 inhibition as a new therapeutic approach in the treatment of various cancers, such as </span>melanoma, breast cancer, </span>pancreatic cancer<span>, cervical cancer, etc.</span></span></span></p></div>\",\"PeriodicalId\":49790,\"journal\":{\"name\":\"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis\",\"volume\":\"824 \",\"pages\":\"Article 111776\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0027510722000033\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0027510722000033","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 12

摘要

有丝分裂是细胞分裂的过程,受细胞周期中的检查点调控。G1-S、S和G2-M是三个主要的检查点,它们阻止细胞周期的下一个阶段的开始,直到前一个阶段完成。DNA损伤导致G2-M检查点的激活,这可以触发下游DNA损伤反应(DDR)途径,在损伤修复时诱导细胞周期停滞。如果DNA损伤不能修复,复制应激反应(RSR)途径最终通过凋亡导致细胞死亡,在这种情况下称为有丝分裂灾难。许多癌症治疗(化疗和放疗)会引起基于单链断裂(SSBs)或双链断裂(DSBs)的DNA损伤,通过有丝分裂突变导致细胞死亡。然而,受损细胞可以激活WEE1激酶(作为DDR和RSR途径的一部分),通过诱导细胞周期阻滞在G2期来防止细胞凋亡和细胞死亡。因此,抑制WEE1激酶可以使癌细胞对化疗药物敏感。本文综述了WEE1激酶(一种分子量为96 kDa的生物大分子)在细胞周期中的作用及其与其他调控途径的相互作用。此外,我们还讨论了WEE1抑制作为治疗各种癌症(如黑色素瘤、乳腺癌、胰腺癌、宫颈癌等)的新治疗方法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cell cycle involvement in cancer therapy; WEE1 kinase, a potential target as therapeutic strategy

Mitosis is the process of cell division and is regulated by checkpoints in the cell cycle. G1-S, S, and G2-M are the three main checkpoints that prevent initiation of the next phase of the cell cycle phase until previous phase has completed. DNA damage leads to activation of the G2-M checkpoint, which can trigger a downstream DNA damage response (DDR) pathway to induce cell cycle arrest while the damage is repaired. If the DNA damage cannot be repaired, the replication stress response (RSR) pathway finally leads to cell death by apoptosis, in this case called mitotic catastrophe. Many cancer treatments (chemotherapy and radiotherapy) cause DNA damages based on SSBs (single strand breaks) or DSBs (double strand breaks), which cause cell death through mitotic catastrophe. However, damaged cells can activate WEE1 kinase (as a part of the DDR and RSR pathways), which prevents apoptosis and cell death by inducing cell cycle arrest at G2 phase. Therefore, inhibition of WEE1 kinase could sensitize cancer cells to chemotherapeutic drugs. This review focuses on the role of WEE1 kinase (as a biological macromolecule which has a molecular mass of 96 kDa) in the cell cycle, and its interactions with other regulatory pathways. In addition, we discuss the potential of WEE1 inhibition as a new therapeutic approach in the treatment of various cancers, such as melanoma, breast cancer, pancreatic cancer, cervical cancer, etc.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
0.00%
发文量
24
审稿时长
51 days
期刊介绍: Mutation Research (MR) provides a platform for publishing all aspects of DNA mutations and epimutations, from basic evolutionary aspects to translational applications in genetic and epigenetic diagnostics and therapy. Mutations are defined as all possible alterations in DNA sequence and sequence organization, from point mutations to genome structural variation, chromosomal aberrations and aneuploidy. Epimutations are defined as alterations in the epigenome, i.e., changes in DNA methylation, histone modification and small regulatory RNAs. MR publishes articles in the following areas: Of special interest are basic mechanisms through which DNA damage and mutations impact development and differentiation, stem cell biology and cell fate in general, including various forms of cell death and cellular senescence. The study of genome instability in human molecular epidemiology and in relation to complex phenotypes, such as human disease, is considered a growing area of importance. Mechanisms of (epi)mutation induction, for example, during DNA repair, replication or recombination; novel methods of (epi)mutation detection, with a focus on ultra-high-throughput sequencing. Landscape of somatic mutations and epimutations in cancer and aging. Role of de novo mutations in human disease and aging; mutations in population genomics. Interactions between mutations and epimutations. The role of epimutations in chromatin structure and function. Mitochondrial DNA mutations and their consequences in terms of human disease and aging. Novel ways to generate mutations and epimutations in cell lines and animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信