{"title":"捕捉自闭症儿童在工程实践中的参与:关注问题范围","authors":"Hoda Ehsan, M. Cardella","doi":"10.7771/2157-9288.1262","DOIUrl":null,"url":null,"abstract":"In the last two decades, pre-college engineering education has increased, with research on pre-college engineering education emerging as a nascent field. However, limited research, if any, has considered aspects of engineering thinking of children with neurodiversity. In line with calls for broadening participation in engineering education, consideration of neurodiverse children is critical. Among various neurodiverse conditions, the number of children with autism is rapidly growing. In addition, studies have shown that individuals with autism have the potential to perform well in activities that require systematizing abilities. Engineering is one such activity. Prior research has provided evidence of the importance of early engineering learning opportunities in terms of future performance and interest in engineering; therefore, it is critical that children with autism have access to appropriate engineering experiences. We thus need to gain a deeper understanding of how they engage in engineering learning activities. In this study, we conducted a qualitative single-case-study analysis in which we closely looked at ways a nine-year-old child with mild autism engaged in problem scoping along with his mother. We focused on three main components of problem scoping in engineering design: (1) Problem Framing, (2) Information Gathering, and (3) Reflection. The instances that we have seen in mother–child interactions and conversation provided evidence that the child with autism was capable of engaging in all three aspects of problem scoping. The behaviors we have observed were mostly associated with Problem Framing and Information Gathering. However, we have also seen some evidence of Reflection. We believe that the findings of this study lay a foundation for future studies of children with autism and engineering design, and how to effectively engage them in these activities.","PeriodicalId":37951,"journal":{"name":"Journal of Pre-College Engineering Education Research","volume":"10 1","pages":"2"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Capturing Children with Autism’s Engagement in Engineering Practices: A Focus on Problem Scoping\",\"authors\":\"Hoda Ehsan, M. Cardella\",\"doi\":\"10.7771/2157-9288.1262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last two decades, pre-college engineering education has increased, with research on pre-college engineering education emerging as a nascent field. However, limited research, if any, has considered aspects of engineering thinking of children with neurodiversity. In line with calls for broadening participation in engineering education, consideration of neurodiverse children is critical. Among various neurodiverse conditions, the number of children with autism is rapidly growing. In addition, studies have shown that individuals with autism have the potential to perform well in activities that require systematizing abilities. Engineering is one such activity. Prior research has provided evidence of the importance of early engineering learning opportunities in terms of future performance and interest in engineering; therefore, it is critical that children with autism have access to appropriate engineering experiences. We thus need to gain a deeper understanding of how they engage in engineering learning activities. In this study, we conducted a qualitative single-case-study analysis in which we closely looked at ways a nine-year-old child with mild autism engaged in problem scoping along with his mother. We focused on three main components of problem scoping in engineering design: (1) Problem Framing, (2) Information Gathering, and (3) Reflection. The instances that we have seen in mother–child interactions and conversation provided evidence that the child with autism was capable of engaging in all three aspects of problem scoping. The behaviors we have observed were mostly associated with Problem Framing and Information Gathering. However, we have also seen some evidence of Reflection. We believe that the findings of this study lay a foundation for future studies of children with autism and engineering design, and how to effectively engage them in these activities.\",\"PeriodicalId\":37951,\"journal\":{\"name\":\"Journal of Pre-College Engineering Education Research\",\"volume\":\"10 1\",\"pages\":\"2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pre-College Engineering Education Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7771/2157-9288.1262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pre-College Engineering Education Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7771/2157-9288.1262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
Capturing Children with Autism’s Engagement in Engineering Practices: A Focus on Problem Scoping
In the last two decades, pre-college engineering education has increased, with research on pre-college engineering education emerging as a nascent field. However, limited research, if any, has considered aspects of engineering thinking of children with neurodiversity. In line with calls for broadening participation in engineering education, consideration of neurodiverse children is critical. Among various neurodiverse conditions, the number of children with autism is rapidly growing. In addition, studies have shown that individuals with autism have the potential to perform well in activities that require systematizing abilities. Engineering is one such activity. Prior research has provided evidence of the importance of early engineering learning opportunities in terms of future performance and interest in engineering; therefore, it is critical that children with autism have access to appropriate engineering experiences. We thus need to gain a deeper understanding of how they engage in engineering learning activities. In this study, we conducted a qualitative single-case-study analysis in which we closely looked at ways a nine-year-old child with mild autism engaged in problem scoping along with his mother. We focused on three main components of problem scoping in engineering design: (1) Problem Framing, (2) Information Gathering, and (3) Reflection. The instances that we have seen in mother–child interactions and conversation provided evidence that the child with autism was capable of engaging in all three aspects of problem scoping. The behaviors we have observed were mostly associated with Problem Framing and Information Gathering. However, we have also seen some evidence of Reflection. We believe that the findings of this study lay a foundation for future studies of children with autism and engineering design, and how to effectively engage them in these activities.
期刊介绍:
The Journal of Pre-College Engineering Education Research (J-PEER) is issued electronically twice a year and serves as a forum and community space for the publication of research and evaluation reports on areas of pre-college STEM education, particularly in engineering. J-PEER targets scholars and practitioners in the new and expanding field of pre-college engineering education. This journal invites authors to submit their original and unpublished work in the form of (1) research papers or (2) shorter practitioner reports in numerous areas of STEM education, with a special emphasis on cross-disciplinary approaches incorporating engineering. J-PEER publishes a wide range of topics, including but not limited to: research articles on elementary and secondary students’ learning; curricular and extracurricular approaches to teaching engineering in elementary and secondary school; professional development of teachers and other school professionals; comparative approaches to curriculum and professional development in engineering education; parents’ attitudes toward engineering; and the learning of engineering in informal settings.