子模、律不变容量的双极行为

IF 1.3 Q2 STATISTICS & PROBABILITY
M. Amarante
{"title":"子模、律不变容量的双极行为","authors":"M. Amarante","doi":"10.1515/strm-2020-0025","DOIUrl":null,"url":null,"abstract":"Abstract In the case of a submodular, law-invariant capacity, we provide an entirely elementary proof of a result of Marinacci [M. Marinacci, Upper probabilities and additivity, Sankhyā Ser. A 61 1999, no. 3, 358–361]. As a corollary, we also show that the anticore of a continuous submodular, law-invariant nonatomic capacity has a dichotomous nature: either it is one-dimensional or it is infinite-dimensional. The results have implications for the use of such capacities in financial and economic applications.","PeriodicalId":44159,"journal":{"name":"Statistics & Risk Modeling","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bipolar behavior of submodular, law-invariant capacities\",\"authors\":\"M. Amarante\",\"doi\":\"10.1515/strm-2020-0025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the case of a submodular, law-invariant capacity, we provide an entirely elementary proof of a result of Marinacci [M. Marinacci, Upper probabilities and additivity, Sankhyā Ser. A 61 1999, no. 3, 358–361]. As a corollary, we also show that the anticore of a continuous submodular, law-invariant nonatomic capacity has a dichotomous nature: either it is one-dimensional or it is infinite-dimensional. The results have implications for the use of such capacities in financial and economic applications.\",\"PeriodicalId\":44159,\"journal\":{\"name\":\"Statistics & Risk Modeling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics & Risk Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/strm-2020-0025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Risk Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/strm-2020-0025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

摘要

摘要在子模、律不变容量的情况下,我们提供了Marinacci结果的一个完全初等的证明[M.Marinacci,Upper probabilities and additivity,SankhyāSer.a 61 1999,no.3358-361]。作为推论,我们还证明了连续子模、律不变的非原子容量的反核具有二分法性质:要么是一维的,要么是无限维的。研究结果对在金融和经济应用中使用这种能力具有启示意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bipolar behavior of submodular, law-invariant capacities
Abstract In the case of a submodular, law-invariant capacity, we provide an entirely elementary proof of a result of Marinacci [M. Marinacci, Upper probabilities and additivity, Sankhyā Ser. A 61 1999, no. 3, 358–361]. As a corollary, we also show that the anticore of a continuous submodular, law-invariant nonatomic capacity has a dichotomous nature: either it is one-dimensional or it is infinite-dimensional. The results have implications for the use of such capacities in financial and economic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics & Risk Modeling
Statistics & Risk Modeling STATISTICS & PROBABILITY-
CiteScore
1.80
自引率
6.70%
发文量
6
期刊介绍: Statistics & Risk Modeling (STRM) aims at covering modern methods of statistics and probabilistic modeling, and their applications to risk management in finance, insurance and related areas. The journal also welcomes articles related to nonparametric statistical methods and stochastic processes. Papers on innovative applications of statistical modeling and inference in risk management are also encouraged. Topics Statistical analysis for models in finance and insurance Credit-, market- and operational risk models Models for systemic risk Risk management Nonparametric statistical inference Statistical analysis of stochastic processes Stochastics in finance and insurance Decision making under uncertainty.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信