相对自由三似体上最小二似体同余

Q3 Mathematics
A. Zhuchok
{"title":"相对自由三似体上最小二似体同余","authors":"A. Zhuchok","doi":"10.30970/ms.57.1.23-31","DOIUrl":null,"url":null,"abstract":"When Loday and Ronco studied ternary planar trees, they introduced types of algebras,called trioids and trialgebras. A trioid is a nonempty set equipped with three binary associativeoperations satisfying additional eight axioms relating these operations, while a trialgebra is justa linear analog of a trioid. If all operations of a trioid (trialgebra) coincide, we obtain the notionof a semigroup (associative algebra), and if two concrete operations of a trioid (trialgebra)coincide, we obtain the notion of a dimonoid (dialgebra) and so, trioids (trialgebras) are ageneralization of semigroups (associative algebras) and dimonoids (dialgebras). Trioids andtrialgebras have close relationships with the Hopf algebras, the Leibniz 3-algebras, the Rota-Baxter operators, and the post-Jordan algebras. Originally, these structures arose in algebraictopology. One of the most useful concepts in algebra is the free object. Every variety containsfree algebras and free objects in any variety of algebras are important in the study of thatvariety. Loday and Ronco constructed the free trioid of rank 1 and the free trialgebra. Recently,the free trioid of an arbitrary rank, the free commutative trioid, the free n-nilpotent trioid, thefree rectangular triband, the free left n-trinilpotent trioid and the free abelian trioid wereconstructed and the least dimonoid congruences as well as the least semigroup congruence onthe first four free algebras were characterized. However, just mentioned congruences on freeleft (right) n-trinilpotent trioids and free abelian trioids were not considered. In this paper, wecharacterize the least dimonoid congruences and the least semigroup congruence on free left(right) n-trinilpotent trioids and free abelian trioids.","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The least dimonoid congruences on relatively free trioids\",\"authors\":\"A. Zhuchok\",\"doi\":\"10.30970/ms.57.1.23-31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When Loday and Ronco studied ternary planar trees, they introduced types of algebras,called trioids and trialgebras. A trioid is a nonempty set equipped with three binary associativeoperations satisfying additional eight axioms relating these operations, while a trialgebra is justa linear analog of a trioid. If all operations of a trioid (trialgebra) coincide, we obtain the notionof a semigroup (associative algebra), and if two concrete operations of a trioid (trialgebra)coincide, we obtain the notion of a dimonoid (dialgebra) and so, trioids (trialgebras) are ageneralization of semigroups (associative algebras) and dimonoids (dialgebras). Trioids andtrialgebras have close relationships with the Hopf algebras, the Leibniz 3-algebras, the Rota-Baxter operators, and the post-Jordan algebras. Originally, these structures arose in algebraictopology. One of the most useful concepts in algebra is the free object. Every variety containsfree algebras and free objects in any variety of algebras are important in the study of thatvariety. Loday and Ronco constructed the free trioid of rank 1 and the free trialgebra. Recently,the free trioid of an arbitrary rank, the free commutative trioid, the free n-nilpotent trioid, thefree rectangular triband, the free left n-trinilpotent trioid and the free abelian trioid wereconstructed and the least dimonoid congruences as well as the least semigroup congruence onthe first four free algebras were characterized. However, just mentioned congruences on freeleft (right) n-trinilpotent trioids and free abelian trioids were not considered. In this paper, wecharacterize the least dimonoid congruences and the least semigroup congruence on free left(right) n-trinilpotent trioids and free abelian trioids.\",\"PeriodicalId\":37555,\"journal\":{\"name\":\"Matematychni Studii\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematychni Studii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30970/ms.57.1.23-31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.57.1.23-31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

当Loday和Ronco研究三元平面树时,他们引入了代数的类型,称为三胚和三代数。三元代数是一个非空集,配备了三个二进制关联运算,满足与这些运算相关的另外八个公理,而三代数只是三元代数的线性模拟。如果一个trioid(trialgebra)的所有运算都重合,我们得到了半群(结合代数)的概念,如果一个trioid(trialgebra)的两个具体运算重合,我们就得到了二monoid(dialgebra)的概念。三元组和三代数与Hopf代数、Leibniz 3-代数、Rota-Baxter算子和后Jordan代数有着密切的关系。最初,这些结构出现在代数拓扑中。代数中最有用的概念之一是自由对象。每一个变种都包含自由代数,任何变种代数中的自由对象在该变种的研究中都是重要的。Loday和Ronco构造了秩为1的自由三胚和自由三代数。最近,我们构造了任意秩的自由三元体、自由交换三元体,自由n-幂零三元体和自由矩形三元带、自由左n-三元势三元体以及自由阿贝尔三元体。然而,刚才提到的自由左(右)n-三元势三元体和自由阿贝尔三元体上的同余没有被考虑。本文刻画了自由左(右)n-三次幂三元组和自由阿贝尔三元组上的最小二单调同余和最小半群同余。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The least dimonoid congruences on relatively free trioids
When Loday and Ronco studied ternary planar trees, they introduced types of algebras,called trioids and trialgebras. A trioid is a nonempty set equipped with three binary associativeoperations satisfying additional eight axioms relating these operations, while a trialgebra is justa linear analog of a trioid. If all operations of a trioid (trialgebra) coincide, we obtain the notionof a semigroup (associative algebra), and if two concrete operations of a trioid (trialgebra)coincide, we obtain the notion of a dimonoid (dialgebra) and so, trioids (trialgebras) are ageneralization of semigroups (associative algebras) and dimonoids (dialgebras). Trioids andtrialgebras have close relationships with the Hopf algebras, the Leibniz 3-algebras, the Rota-Baxter operators, and the post-Jordan algebras. Originally, these structures arose in algebraictopology. One of the most useful concepts in algebra is the free object. Every variety containsfree algebras and free objects in any variety of algebras are important in the study of thatvariety. Loday and Ronco constructed the free trioid of rank 1 and the free trialgebra. Recently,the free trioid of an arbitrary rank, the free commutative trioid, the free n-nilpotent trioid, thefree rectangular triband, the free left n-trinilpotent trioid and the free abelian trioid wereconstructed and the least dimonoid congruences as well as the least semigroup congruence onthe first four free algebras were characterized. However, just mentioned congruences on freeleft (right) n-trinilpotent trioids and free abelian trioids were not considered. In this paper, wecharacterize the least dimonoid congruences and the least semigroup congruence on free left(right) n-trinilpotent trioids and free abelian trioids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matematychni Studii
Matematychni Studii Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
38
期刊介绍: Journal is devoted to research in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信