乘数和平均遍历乘法算子的最大模原理

IF 0.7 4区 数学 Q2 MATHEMATICS
E. Bilokopytov
{"title":"乘数和平均遍历乘法算子的最大模原理","authors":"E. Bilokopytov","doi":"10.7900/jot.2020aug11.2299","DOIUrl":null,"url":null,"abstract":"The main goal of this note is to show that (not necessarily holomorphic) multipliers of a wide class of normed spaces of continuous functions over a connected Hausdorff topological space cannot attain their multiplier norms, unless they are constants. As an application, a contractive multiplication operator is either a multiplication with a constant, or is completely non-unitary. Additionally, we explore possibilities for a multiplication operator to be (weakly) compact and (uniformly) mean ergodic.","PeriodicalId":50104,"journal":{"name":"Journal of Operator Theory","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Maximum modulus principle for multipliers and mean ergodic multiplication operators\",\"authors\":\"E. Bilokopytov\",\"doi\":\"10.7900/jot.2020aug11.2299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main goal of this note is to show that (not necessarily holomorphic) multipliers of a wide class of normed spaces of continuous functions over a connected Hausdorff topological space cannot attain their multiplier norms, unless they are constants. As an application, a contractive multiplication operator is either a multiplication with a constant, or is completely non-unitary. Additionally, we explore possibilities for a multiplication operator to be (weakly) compact and (uniformly) mean ergodic.\",\"PeriodicalId\":50104,\"journal\":{\"name\":\"Journal of Operator Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7900/jot.2020aug11.2299\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7900/jot.2020aug11.2299","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

这个注记的主要目的是证明连通Hausdorff拓扑空间上连续函数的一类广义赋范空间的(不一定全纯的)乘子不能达到它们的乘子范数,除非它们是常数。作为一种应用,压缩乘法算子要么是与常数的乘积,要么是完全非酉的。此外,我们还探讨了乘法算子(弱)紧致和(一致)均值遍历的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum modulus principle for multipliers and mean ergodic multiplication operators
The main goal of this note is to show that (not necessarily holomorphic) multipliers of a wide class of normed spaces of continuous functions over a connected Hausdorff topological space cannot attain their multiplier norms, unless they are constants. As an application, a contractive multiplication operator is either a multiplication with a constant, or is completely non-unitary. Additionally, we explore possibilities for a multiplication operator to be (weakly) compact and (uniformly) mean ergodic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
23
审稿时长
12 months
期刊介绍: The Journal of Operator Theory is rigorously peer reviewed and endevours to publish significant articles in all areas of operator theory, operator algebras and closely related domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信