稳定同伦范畴运动变形的特殊纤维是代数的

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Bogdan Gheorghe, Guozhen Wang, Zhouli Xu
{"title":"稳定同伦范畴运动变形的特殊纤维是代数的","authors":"Bogdan Gheorghe, Guozhen Wang, Zhouli Xu","doi":"10.4310/acta.2021.v226.n2.a2","DOIUrl":null,"url":null,"abstract":"For each prime $p$, we define a $t$-structure on the category $\\widehat{S^{0,0}}/\\tau\\text{-}\\mathbf{Mod}_{harm}^b$ of harmonic $\\mathbb{C}$-motivic left module spectra over $\\widehat{S^{0,0}}/\\tau$, whose MGL-homology has bounded Chow-Novikov degree, such that its heart is equivalent to the abelian category of $p$-completed $BP_*BP$-comodules that are concentrated in even degrees. We prove that $\\widehat{S^{0,0}}/\\tau\\text{-}\\mathbf{Mod}_{harm}^b$ is equivalent to $\\mathcal{D}^b({{BP}_*{BP}\\text{-}\\mathbf{Comod}}^{ev})$ as stable $\\infty$-categories equipped with $t$-structures. \nAs an application, for each prime $p$, we prove that the motivic Adams spectral sequence for $\\widehat{S^{0,0}}/\\tau$, which converges to the motivic homotopy groups of $\\widehat{S^{0,0}}/\\tau$, is isomorphic to the algebraic Novikov spectral sequence, which converges to the classical Adams-Novikov $E_2$-page for the sphere spectrum $\\widehat{S^0}$. This isomorphism of spectral sequences allows Isaksen and the second and third authors to compute the stable homotopy groups of spheres at least to the 90-stem, with ongoing computations into even higher dimensions.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2018-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"The special fiber of the motivic deformation of the stable homotopy category is algebraic\",\"authors\":\"Bogdan Gheorghe, Guozhen Wang, Zhouli Xu\",\"doi\":\"10.4310/acta.2021.v226.n2.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For each prime $p$, we define a $t$-structure on the category $\\\\widehat{S^{0,0}}/\\\\tau\\\\text{-}\\\\mathbf{Mod}_{harm}^b$ of harmonic $\\\\mathbb{C}$-motivic left module spectra over $\\\\widehat{S^{0,0}}/\\\\tau$, whose MGL-homology has bounded Chow-Novikov degree, such that its heart is equivalent to the abelian category of $p$-completed $BP_*BP$-comodules that are concentrated in even degrees. We prove that $\\\\widehat{S^{0,0}}/\\\\tau\\\\text{-}\\\\mathbf{Mod}_{harm}^b$ is equivalent to $\\\\mathcal{D}^b({{BP}_*{BP}\\\\text{-}\\\\mathbf{Comod}}^{ev})$ as stable $\\\\infty$-categories equipped with $t$-structures. \\nAs an application, for each prime $p$, we prove that the motivic Adams spectral sequence for $\\\\widehat{S^{0,0}}/\\\\tau$, which converges to the motivic homotopy groups of $\\\\widehat{S^{0,0}}/\\\\tau$, is isomorphic to the algebraic Novikov spectral sequence, which converges to the classical Adams-Novikov $E_2$-page for the sphere spectrum $\\\\widehat{S^0}$. This isomorphism of spectral sequences allows Isaksen and the second and third authors to compute the stable homotopy groups of spheres at least to the 90-stem, with ongoing computations into even higher dimensions.\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2018-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/acta.2021.v226.n2.a2\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/acta.2021.v226.n2.a2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 32

摘要

对于每个素数$p$,我们在类别$\widehat{S^{0,0}}/\tau\text{-}\mathbf上定义一个$t$结构{Mod}_$\widehat{S^{0,0}}}/\tau$上调和$\mathbb{C}$-motivic左模谱的{harm}^b$,其MGL同调具有界Chow-Novikov度,使得其心等价于集中在偶数度的$p$-完备$BP_*BP$-模的阿贝尔范畴。我们证明$\widehat{S^{0,0}}/\tau\text{-}\mathbf{Mod}_{harm}^b$相当于$\mathcal{D}^b({{BP}_*{BP}\text{-}\mathbf{Comod}}^{ev})$作为稳定的$\infty$-类别,配备$t$-结构。作为一个应用,对于每个素数$p$,我们证明了$\widehat{S^{0,0}}/\tau$的motivic-Adams谱序列同构于代数Novikov谱序列,该序列收敛于球面谱$\wideshat{S ^ 0}$的经典Adams-Novikov$E_2$-page,其收敛于$\widethat{S^ 0}$的motivec同伦群。这种谱序列的同构性允许Isaksen和第二和第三作者计算至少到90茎的稳定的球面同伦群,并将计算进行到更高的维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The special fiber of the motivic deformation of the stable homotopy category is algebraic
For each prime $p$, we define a $t$-structure on the category $\widehat{S^{0,0}}/\tau\text{-}\mathbf{Mod}_{harm}^b$ of harmonic $\mathbb{C}$-motivic left module spectra over $\widehat{S^{0,0}}/\tau$, whose MGL-homology has bounded Chow-Novikov degree, such that its heart is equivalent to the abelian category of $p$-completed $BP_*BP$-comodules that are concentrated in even degrees. We prove that $\widehat{S^{0,0}}/\tau\text{-}\mathbf{Mod}_{harm}^b$ is equivalent to $\mathcal{D}^b({{BP}_*{BP}\text{-}\mathbf{Comod}}^{ev})$ as stable $\infty$-categories equipped with $t$-structures. As an application, for each prime $p$, we prove that the motivic Adams spectral sequence for $\widehat{S^{0,0}}/\tau$, which converges to the motivic homotopy groups of $\widehat{S^{0,0}}/\tau$, is isomorphic to the algebraic Novikov spectral sequence, which converges to the classical Adams-Novikov $E_2$-page for the sphere spectrum $\widehat{S^0}$. This isomorphism of spectral sequences allows Isaksen and the second and third authors to compute the stable homotopy groups of spheres at least to the 90-stem, with ongoing computations into even higher dimensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信