Moore–Nehari微分方程的对称和非对称节点解

Pub Date : 2021-12-03 DOI:10.2969/jmsj/86168616
R. Kajikiya
{"title":"Moore–Nehari微分方程的对称和非对称节点解","authors":"R. Kajikiya","doi":"10.2969/jmsj/86168616","DOIUrl":null,"url":null,"abstract":"We consider the Moore-Nehari equation, u′′+h(x, λ)|u|p−1u = 0 in (−1, 1) with u(−1) = u(1) = 0, where p > 1, h(x, λ) = 0 for |x| < λ, h(x, λ) = 1 for λ ≤ |x| ≤ 1 and λ ∈ (0, 1) is a parameter. We prove the existence of a solution which has exactly m zeros in the interval (−1, 0) and exactly n zeros in (0, 1) for given nonnegative integers m and n.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Symmetric and asymmetric nodal solutions for the Moore–Nehari differential equation\",\"authors\":\"R. Kajikiya\",\"doi\":\"10.2969/jmsj/86168616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the Moore-Nehari equation, u′′+h(x, λ)|u|p−1u = 0 in (−1, 1) with u(−1) = u(1) = 0, where p > 1, h(x, λ) = 0 for |x| < λ, h(x, λ) = 1 for λ ≤ |x| ≤ 1 and λ ∈ (0, 1) is a parameter. We prove the existence of a solution which has exactly m zeros in the interval (−1, 0) and exactly n zeros in (0, 1) for given nonnegative integers m and n.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2969/jmsj/86168616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2969/jmsj/86168616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们考虑Moore-Nehari方程,u′′′+h(x,λ)|u|p−1u=0在(−1,1)中,u(−1)=u(1)=0,其中p>1,h(x、λ)=0对于|x|<λ,h(x、λ)=1对于λ≤|x|≤1,λ∈(0,1)是一个参数。对于给定的非负整数m和n,我们证明了一个解的存在性,该解在区间(−1,0)中正好有m个零,在区间(0,1)中恰好有n个零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Symmetric and asymmetric nodal solutions for the Moore–Nehari differential equation
We consider the Moore-Nehari equation, u′′+h(x, λ)|u|p−1u = 0 in (−1, 1) with u(−1) = u(1) = 0, where p > 1, h(x, λ) = 0 for |x| < λ, h(x, λ) = 1 for λ ≤ |x| ≤ 1 and λ ∈ (0, 1) is a parameter. We prove the existence of a solution which has exactly m zeros in the interval (−1, 0) and exactly n zeros in (0, 1) for given nonnegative integers m and n.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信