{"title":"Moore–Nehari微分方程的对称和非对称节点解","authors":"R. Kajikiya","doi":"10.2969/jmsj/86168616","DOIUrl":null,"url":null,"abstract":"We consider the Moore-Nehari equation, u′′+h(x, λ)|u|p−1u = 0 in (−1, 1) with u(−1) = u(1) = 0, where p > 1, h(x, λ) = 0 for |x| < λ, h(x, λ) = 1 for λ ≤ |x| ≤ 1 and λ ∈ (0, 1) is a parameter. We prove the existence of a solution which has exactly m zeros in the interval (−1, 0) and exactly n zeros in (0, 1) for given nonnegative integers m and n.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Symmetric and asymmetric nodal solutions for the Moore–Nehari differential equation\",\"authors\":\"R. Kajikiya\",\"doi\":\"10.2969/jmsj/86168616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the Moore-Nehari equation, u′′+h(x, λ)|u|p−1u = 0 in (−1, 1) with u(−1) = u(1) = 0, where p > 1, h(x, λ) = 0 for |x| < λ, h(x, λ) = 1 for λ ≤ |x| ≤ 1 and λ ∈ (0, 1) is a parameter. We prove the existence of a solution which has exactly m zeros in the interval (−1, 0) and exactly n zeros in (0, 1) for given nonnegative integers m and n.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2969/jmsj/86168616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2969/jmsj/86168616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Symmetric and asymmetric nodal solutions for the Moore–Nehari differential equation
We consider the Moore-Nehari equation, u′′+h(x, λ)|u|p−1u = 0 in (−1, 1) with u(−1) = u(1) = 0, where p > 1, h(x, λ) = 0 for |x| < λ, h(x, λ) = 1 for λ ≤ |x| ≤ 1 and λ ∈ (0, 1) is a parameter. We prove the existence of a solution which has exactly m zeros in the interval (−1, 0) and exactly n zeros in (0, 1) for given nonnegative integers m and n.